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EXECUTIVE SUMMARY 

The goal of this study is to determine the origin and transport pathways of the fecal 

bacteria in the region and assess BMPs as countermeasures to alleviate the excess loading. 

The outcome of the project is to reduce bacteria loading, and improved water quality. 

Cooperated the available OSSF data with local agencies suggestion, we conducted a field 

survey to identify 14 critical water sampling locations. Five runs of water sampling and 

water quality measurements demonstrate the elevated nutrient and E.coli were observed in 

the system. The bacteria source tracking showed that the Human qPCR marker at sites 5, 

7, 13 were higher than the criteria, which indicated the potential contribution of human 

fecal contaminants from the OSSFs. The elevated enterococci at five TCEQ monitoring 

sites response to the nonpoint source we found in the drainage system accordingly. 

Therefore, the failing OSSFs is one of the bacteria pollution origins. We suggest that fix 

OSSFs at site 5, 7 and 13 is one of the BMPs to decrease the bacteria.  

A coupled EPA-SWMM/MOPUS system was established to help assess the 

potential of infiltration BMPs, specifically bioretention cells, in alleviating the bacteria 

loading problems if installed in the upstream of watersheds with high concentration of 

OSSFs.  Using a default configuration of bioretention cell leads to 1-88% reductions in 

peak simulated runoff, and 0-26% reductions in peak bacteria loading.  Sensitivity 

experiments suggest that increasing capacity of the BMP leads to larger reductions in peak 

runoff but relatively modest reductions in bacteria loading.  
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Chapter I 

Introduction 

1 Background Information 

The Neches River in Southeast Texas has been reported (TCEQ, 2010) that the 

bacteria indicator, namely Escherichia coli (E. coli) in freshwater or Enterococci in 

saltwater excessed the criterion of 126 mpn/100ml or 35 mpn/100ml, respectively. Recent 

flooding caused the increase of the fecal bacteria loading along the Lower Neches River 

Tidal is a major water quality concern of the region. This increase can be explained by an 

increase in failures of on-site sewage facilities (OSSFs) that are an aggregate result of aging 

facilities and more frequent occurrences of extreme flooding in recent years. A total 

maximum daily load (TMDL) and implementation plan (I-Plan) to reduce bacteria and 

protect recreational safety in the Neches River Tidal are being developed by the 

stakeholders and Texas Commission on Environmental Quality (TCEQ, 

https://www.tceq.texas.gov/waterquality/tmdl/nav/118-nechestidal-bacteria). The study 

(TCEQ, 2022) has illustrated that bacteria load contributions from regulated and 

unregulated stormwater sources follows a pattern of higher concentrations in the water 

body as the first flush of storm runoff enters the receiving stream and declines as runoff 

washes bacteria from the land surface. The bacteria released from OSSFs can travel 

considerable distances through saturated soils and contaminate groundwater, terrestrial 

runoff, and coastal waters. If left unmitigated, the rising presence of bacteria along Neches 

River and in coastal waters can pose a serious public health risk, and this risk may amplify 
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with increasing frequency and intensity of flood events, and by sea-level rise. Therefore, 

there is an urgent need to determine the origin and transport pathways of the bacteria in the 

region and assess BMPs as countermeasures to alleviate the excess loading. 

The project was a joint effort among Lamar University, UT Arlington, and Texas A 

& M, seeking answers to this need under Coastal Hazards and Resiliency Planning category. 

In this project, we focus on the Neches River Tidal watershed to a) conduct a field survey 

on characteristics of OSSFs to identify the criteria that help us find bacteria loading hot 

spots; b) assess the bacteria impact by analyzing the water quality data collected at the Salt 

Water Barrier using YSI sensors using innovative machine learning technologies, running 

water samples at locations where the most pollution source origin are discharged and, and 

applying innovative lab technology to track fecal bacteria sources from the selected water 

samples, c) couple the established SWMM model with an offline bacteria life cycle-

MOPUS model for understanding bacteria transport pathways and assessing BMPs to 

alleviate excess loadings. Three universities incorporated in parallel to conduct three goals 

as three project tasks.  

 

2 Study Areas 

The research team from Texas A&M used the OSSF permit data collected from the 

TCEQ OARS database (data as of December 2021) to develop a map showing OSSF 

inventory and updated parcels as shown in Chapter I2Figure 1. The map included circles 

with six distinct colors indicating the age of the OSSFs when available from the permit or 
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building records as well as sewer area and location of TCEQ permitted wastewater outfalls 

(discharge points). Figure 2 show a map of 100-year floodplain data from the FEMA 

National Flood Hazard Layer (NFHL) digital database, the Soil Survey Geographic 

Database (SSURGO) soil data for the project area, and the OSSF inventory.   

After consulted with the representatives of TOWA (Texas Onsite Wastewater 

Association) and the Orange County Health Department to determine areas where OSSFs 

may be “failing” due to age and/or limiting soil conditions (shallow depth to water table 

and clay soil) with the 100-year floodplain. Seven “hot” areas were identified for 

conducting walk-through site visits on March 14 and 15, 2023. The field survey evaluated 

the operating conditions of the OSSFs and followed the water flow through the creek to 

determine adequate and safe locations for water quality sampling. Field observations did 

not identify any major failures of OSSF (no sewage on the ground or sewer odor in the 

area), however in two locations (sampling points #2 and #13), presence of algae was 

noticed indicating potential contamination from the subsurface movement of partially 

treated wastewater (OSSF discharges). Students from Lamar were trained for collecting 

water samples using sampling bottles and sampling locations (1 – 14) were marked on the 

map. Figure 3 shows the seven areas for site visits and 14 locations that were selected for 

water quality sampling events. 
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Figure 1. Study area with OSSF inventory map as well as updated parcels and wastewater outfalls. 
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Figure 2. Map of 100-year floodplain, SSURGO soil maps and OSSF inventory. 
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Figure 3. Map of seven areas shown in the insert in top right with purple boundary and 14 sampling 

points for water quality sampling analysis. 

 

 



7 

 

Chapter II 

Methods 

1 Field Water Sampling 

After major rain events as shown in Figure 4, the field sampling was conducted to 

collect the1000-ml water samples and stored in the cooler immediately. At each site, the 

YSI-ProDSS system was used to measure the field temperature, DO, pH, conductivity, 

Turbidity, Ammonia-Nitrogen, and Nitrate-Nitrogen. The “wastewater Sampling Form” 

was filled to record the site condition and measured data. Figure 5 shows a sample sheet 

on 07/06/2023. The water samples were sent back to laboratory in less than 6-hours to 

conduct the E. coli measurement. 

 Following the “Pre-processing of water samples for quantitative PCR” provided 

by Dr. Terry Gentry from Texas A&M University Soil & Aquatic Microbiology Laboratory, 

the sample was pre-processing with disposable membrane filtration units (filter base, 

polycarbonate filter [0.4 μm] with 47 mm diameter, and 100 mL capacity funnel) in the lab 

and stored the folded filters in the storage tube at -80°C until shipment to lab for DNA 

extraction and purification. In addition, the Ammonia-Nitrogen, Nitrite-Nitrogen, Nitrate-

Nitrogen, Total Nitrogen, Phosphate, COD were also measured in the laboratory to 

understand the water chemistry. 
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Figure 4. Sampling schedule based on rain fall events. 
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Figure 5. Sample of "Wastewater Sampling Form" on 07/06/2023. 
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2 Machine Learning Models with YSI Data 

The Neches River shown in Figure 6 rises east of Colfax (at 32°30' N, 95°45' W) 

and flows southeast for 669.49 km to its mouth on Sabine Lake (at 29°58' N, 93°51' W). 

The total of  25928.37 km2 drainage area with abundant rainfall results in a flow of 7.4 km3 

per year (TSHA, 1995a). Saltwater Barrier (SWB) was constructed on the Lower Neches 

River, downstream of Beaumont’s drinking water pump station to prevent the intrusion of 

the saltwater wedge from the Gulf of Mexico (Pizano-Torres et al., 2017). A complex 

EXO2 YSI sensor system was installed at the SWB co-location with USGS station of 

08041780 to monitor the water quality, including water temperature, sample depth, 

conductivity, turbidity, total dissolved solids (TDS), water pH, chlorophyll, nitrate (NO3-

N) and DO (Qian et al., 2019, 2024). Pine Island Bayou (PIB), the major tributary of Lower 

Neches River, rises two miles south of Fuqua (at 30°25' N, 94°44' W) and reaches its mouth 

9.66 km north of downtown Beaumont (at 30°10' N, 94°07' W), with approximately 122.31 

km long (TSHA, 1995b). A water quality sensor installed at the same USGS station 

08041749  monitors real-time water quality measuring water temperature, sample depth, 

conductivity, turbidity, TDS, water pH and DO since June 11, 2008 (TCEQ, 2018a). 

Discharges obtained from USGS stations of 08041000, 08041749 and 08041780 

(https://waterdata.usgs.gov/) are important hydrological characteristics to illustrate the 

local hydro-meteorological conditions.  

https://waterdata.usgs.gov/
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Figure 6. Locations of YSI water quality sensors and USGS stations 

As shown in Figure 6, 15-minute interval gage height and discharge were obtained 

from USGS gage station 08041780 (https://waterdata.usgs.gov/). USGS station 08041000 

(at 30° 21' 20.75" N, 94° 5' 35.65" W) is monitoring water discharge for the upper Neches 

River, while USGS station 08041749 (at 30° 10' 43.76" N, 94° 11' 19.66"W) is associated 

with the Pine Island Bayou, the main tributary of the Neches River. Hourly rain increment 

data at the SWB was collected from St.4320 LNVA Saltwater Barrier 

(https://dd6.onerain.com/).  

Pine Island Bayou WQ Sensor 

https://waterdata.usgs.gov/nwis
https://dd6.onerain.com/
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2.2 Machine Learning Model to Predict Dissolved Oxygen (DO) 

Recently, approaches utilizing advanced machine learning techniques to predict 

water quality with wireless sensor measurements demonstrated high performance (Kim and 

Ahn, 2022; Jiang et al., 2023). The machine learning algorithms using sensor data to predict 

water quality DO are Support Vector Machine (SVM) (Li et al., 2020; Nong et al., 2023), 

Random Forest (RF) (Tiyasha et al., 2021; Ayesha Jasmin et al., 2022),  Artificial Neural 

Network (ANN) (F. Yang et al., 2021; Azma et al., 2023), Recurrent Neural Network (RNN) 

(Y. Liu et al., 2019) and Long Short-Term Memory (LSTM) (Zhi et al., 2021). It is found 

that machine learning models outperformed traditional Multiple Linear Regression (MLR) 

models due to their capabilities of exploring nonlinear relationships between target and 

input features (Csábrági et al., 2017). 

RNN and LSTM are widely used deep learning models to solve the prediction 

problems with sequence data due to the effective ability of memorizing the previous data 

(Greff et al., 2017). LSTM is designed RNN to remember sequences with a data length of 

10 or more, avoiding the weakness of the classical RNN in long-term memory ability (Abba 

et al., 2020). The special capability comes from three kinds of gates in the LSTM memory 

cell, namely forget gate, input gate, and output gate (Huan et al., 2020; P. Liu et al., 2019). 

Thus, the LSTM is suitable to develop longer period DO prediction with time series 

measurements. To generate a consistent long period DO forecasting, rolling forecast 

procedure is employed through continuously repeating the prediction process with updated 

future data to provide real-time and dynamic forecast in unstable environment, (Zeller and 
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Metzger, 2013). In general,  LSTM needs a 

large quantity of training data to mine the 

potential relationships with nonlinear inputs, 

which limits their applications in many 

instances due to under-fitting problem 

(Espejo-Garcia et al., 2020). Transfer 

learning method is an ideal and commonly 

used method to solve the insufficient data 

issue by transferring knowledge across 

similar domains, tasks, and distributions 

(Lumini and Nanni, 2019). Zhu er al. (2021) 

developed a pre-training DO model based on 

the bidirectional LSTM (BiLSTM) with a 

large dataset of the Lake Taihu in China, and used transfer learning to fine-tune the model 

with the target dataset of another lake to increase coefficient of determination (R2) from 

0.381 to 0.793.  

To develop a LSTM deep machine model and provide a 14-day forecast for local 

agencies to make appreciative decisions on water resource planning and exploit 

relationships between DO and other sensor measurements under different hydro-

meteorological conditions, the main steps as illustrated in Figure 7 include 1) building the 

LSTM model for current hourly DO estimations with different input feature scenarios after 

 

Figure 7. The framework of the DO 

prediction model 

. 1Figure 7 

Figure 8 

 

Figure 9 
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the comprehensive sensor data analysis, and comparing with a baseline model using 

traditional MLR, 2) combining transfer learning to improve the performance of the LSTM 

model with insufficient dataset, 3) generating consistent 14-day hourly DO forecasts with 

a rolling forecast procedure. 

 

2.3 Machine Learning Model to Predict Turbidity 

Machine learning has become a valuable tool for analyzing turbidity due to the 

rapid increase in sensor measurements in the aquatic environment. For example, Support 

Vehicle Machine (SVM), Fuzzy Inference Systems (FIS), group method of data handling 

(GMDH), Genetic programming (GP), Artificial Neural Networks (ANN), and Long Short-

Term Memory (LSTM) models have been applied to predict turbidity in reservoirs, rivers, 

and coastal bays, and proved their desirable accuracy (Teixeira et al., 2020; Tsai and Yen, 

2017; Wang et al., 2021). Those models are commonly built with rainfall, discharge, and 

water level, because heavy rainfall affects turbidity via erosion and subsequent runoff, 

increasing sediment loads in water bodies (Leigh et al., 2019). However, the kinds of 

literature only predict the current turbidity with other current or previous measurements. To 

our best knowledge, no model is built for forecasting a period of turbidity, which is more 

useful for local agencies by providing enough time and flexibility for better water resource 

management decisions. To predict hourly turbidity in the following days with hydro-

meteorological measurements, discharge, gage height, and precipitation, a multivariate 

time series multi-step forecasting framework via an attention-based encoder & decoder 
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structure is applied. The encoder and decoder are well-designed using the Gated Recurrent 

Unit (GRU), an advancement of the standard Recurrent Neural Network (RNN) introduced 

by Cho et al. (Cho et al., 2014). It uses special gates (update gate and reset gate) to control 

the flow of information, which can solve the limitations of standard RNNs on long-term 

memory. It is motivated by the Long Short-Term Memory (LSTM) unit but is much simpler 

to compute and implement. It has three components: an encoder component, a decoder 

component, and a temporal attention layer as an attention component (Bahdanau et al., 2016; 

Cho et al., 2014; Du et al., 2020; Zhang et al., 2017). The encoder learns the hidden 

representation of input data with arbitrary lengths, which extracts the deep temporal 

dependency features from the multivariate time series and then uses the temporal attention 

layer to construct latent space variables (temporal attention context vectors). The decoder 

generates latent space variables for forecasting future time series values. Figure 8 shows the 

graphical illustration of the framework.  

 

3 SWMM & MOPUS Model 

EPA’s Stormwater Management Model (EPA-SWMM) is a useful tool in planning 

local, regional and national water resources solution by green infrastructures. EPA-SWMM 

can determine the reduction of runoff by infiltration and retention over the watershed. Low 

impact development, such as green/grey/hybrid infrastructure can be added as a fraction of 

impervious area of a specific catchment into EPA-SWMM model by LID control tool. 
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MOPUS (McCarthy et al., 2011) is a conceptually based model to calculate wash off and 

storage of microorganisms for a catchment. 

 

Figure 8. The sequential-to-sequential forecasting framework via a temporal attention-based 

encoder & decoder model. 

For each site, EPA-SWMM model is developed for the upstream drainage to 

produce runoff simulations under current conditions and with BMPs. Then coupled with 

MOPUS model at 14 sites (Figure 9) to assess the contribution of runoff to bacterial loading, 

and to determine the potential ability of BMPs (bioretention) to reduce runoff and bacterial 
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loading. These BMP sites were selected to be within areas with a large number of septic 

tanks.   

   

Figure 9. Locations where hypothetical BMPs (bioretention cells) are implemented in SWMM.  



18 

 

 

Figure 10. Schematic of coupled modeling system comprised of SWMM and MOPUS.  

The coupled modeling system is illustrated in Figure 10. In this system, EPA-

SWMM produces runoff simulations which are ingested into the MOPUS model to produce 

time series of bacterial concentration. To determine the impacts of BMPs, various 

configurations of BMPs (bioretention cells, Figure 11) were implemented within EPA-

SWMM.  

 

Figure 11. Configuration of a bioretention cell.  

(Source: https://www.cleancoast.texas.gov/documents/5-6-sw-manual.pdf) 

https://www.cleancoast.texas.gov/documents/5-6-sw-manual.pdf


19 

 

Chapter III 

Results and Discussion 

1 Results of Field Water Sampling Measurements 

Table 1. Lab and field measurements on 05/19/2023. 

Measurements from Dr. Thinesh's lab Field sensor readings CAWAQ 

Parameters 

Ammonia 
Nitrogen (NH

3
-N) 

<0.46mg/L 

Nitrite Nitrogen 
(NO

2
-N) 

<1.1mg/L 

Nitrate Nitrogen 

(NO
3

-
-N) 

<1.1mg/L 

Phosphate 

(PO
4

3-
) 

<0.66mg/L 

Total 
Nitrogen (N) 

< 10mg/L 

COD 
(mg/L) 

Temp 
<95 

o
F 

DO 
>3 mg/L 

pH 
6.0~8.5 

Conductivity 
<2500 µS/cm 

Ammonia 
mg/L 

Turbidity 
<75 
NTU 

Nitrate 
mg/L 

E. coli  
<126 

MPN/100ml 

Name of test 

reagent TNT 832 TNT 841 TNT 835 TNT 826 PhosVer Rea. TNT 821         

Measurement 

range 2.0-47.0 2.0-90.0 0.23-13.50 1.0-16.0 0.0-2.5 3.0-150.0         

Sample 1 0.07 0.43 1.01 2.03 0.1 87.8 72.7 1.9 7.75 110.7 0.53 76.1 5.64 1 

Sample 2 0.26 0.12 1.18 1.96 0.34 86.7 73.2 0.9 6.79 98.3 0.86 62.8 7.70 1 

Sample 3 0 0.06 0.31 0.61 0 24.4 76.0 1.4 7.11 195.5 xxx 7.5 0.91 8.5 

Sample 4 0 0.37 0.66 1.56 0.45 56.1 72.8 1.2 7.12 439.4 1.77 21.0 1.80 9.4 

Sample 5 0 0.23 0.84 1.34 0 53.7 78.3 3.0 7.07 225.7 0.24 17.5 5.78 <1.0 

Sample 6 0 0.64 0.69 1.04 0 71.7 76.1 1.1 7.10 152.0 0.25 12.2 2.64 1 

Sample 7 0 0.57 0.58 0.87 0 70.1 77.5 2.9 6.97 273.4 0.16 2.8 1.69 <1.0 

Sample 8 0 0.30 0.91 1.15 0 70.1 77.5 0.8 6.79 150.4 0.20 19.6 3.24 2 

Sample 9 0 0.15 0.91 1.33 0 65.8 76.8 1.9 6.98 199.4 0.39 21.5 3.42 <1.0 

Sample 10 0 0.15 1.04 1.20 0 77.8 76.1 1.6 6.80 131.2 0.20 18.6 2.69 <1.0 

Sample 11 0.21 0.45 0.89 1.68 0.06 73.9 75.7 0.6 7.05 246.9 0.95 21.5 4.17 <1.0 

Sample 12 0 0.44 0.81 1.44 0.25 64.5 76.3 4.4 7.54 395.2 0.29 12.1 3.32 <1.0 

Sample 13* 6.11 0.54 0.71 8.36 0 64.8 89.4 0.5 7.98 835.0 5.47 189.7 5.50 >2419.6 

Sample 14 0 0.43 0.63 0.77 0 42.9 79.9 6.1 6.82 124.0 0.28 28.5 6.82 <1.0 

Note: *The values provided here are the average of two independent measurements of each 

sample.         
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Table 2. Lab and field measurements on 07/06/2023. 

Measurements from Dr. Thinesh's lab* Field sensor readings * CAWAQ 

Parameters 

Ammonia 
Nitrogen (NH

3
-N) 

<0.46mg/L 

Nitrite 
Nitrogen (NO

2
-

N) 
<1.1mg/L 

Nitrate Nitrogen 

(NO
3

-
-N) 

<1.1mg/L 

Phosphate 

(PO
4

3-
) 

<0.66mg/L 

Total 
Nitrogen 

(N) 
< 10mg/L 

COD 
(mg/L) 

Temp 
<95 

o
F 

DO 
>3 mg/L 

pH 
6.0~8.5 

Conductivity 
<2500 µS/cm 

Ammonia 
mg/L 

Turbidity 
<75 
NTU 

Nitrate 
mg/L 

E. coli  
<126 

MPN/100ml 

Name of test 

reagent TNT 832 TNT 841 TNT 835 TNT 826 

PhosVer 

Rea. TNT 821         

Measurement 

range 2.0-47.0 2.0-90.0 0.23-13.50 1.0-16.0 0.0-2.5 

3.0-

150.0         

Sample 1 1.28 0.52 0.00 3.48 0.14 64.3 82.3 0.6 10.30 623.0 8.73 242.6 1.54 4.1 

Sample 2 0.00 0.43 0.37 1.51 0.07 0.0 80.9 2.8 7.45 209.5 0.72 72.9 1.23 1413.6 

Sample 3 0.08 0.41 0.33 1.10 0.10 0.0 79.7 1.1 7.21 155.2 0.14 8.0 0.60 129.6 

Sample 4 0.62 0.6 0.65 2.62 3.54 0.0 79.4 0.4 7.10 182.5 0.64 40.4 1.27 >2419.6 

Sample 5 0.52 0.42 0.29 1.66 0.43 0.0 83.3 0.2 7.96 179.4 1.11 12.4 0.33 >2419.6 

Sample 6 0.03 0.35 0.28 0.78 0.17 0.0 82.6 0.3 7.63 204.9 0.21 6.8 0.70 5.2 

Sample 7 0.00 0.36 0.38 0.90 0.34 0.0 83.6 1.0 7.47 297.3 0.21 21.5 1.03 68.2 

Sample 8 0.00 0.33 0.30 0.86 0.16 11.3 84.9 0.2 7.32 207.1 1.86 7.3 2.47 365.4 

Sample 9 0.10 0.39 0.19 0.46 1.33 0.0 82.1 2.1 7.77 756.0 0.61 16.0 1.13 48 

Sample 10 0.12 0.45 0.31 1.12 0.18 1.2 82.8 3.0 7.38 1173.5 0.87 466.0 2.22 10.9 

Sample 11 0.40 0.44 0.59 1.51 0.37 2.8 82.0 0.9 7.35 348.8 4.54 11.6 1.21 >2419.6 

Sample 12  -   -   -   -   -   -   -   -   -   -   -   -   -   -  

Sample 13  -   -   -   -   -   -   -   -   -   -   -   -   -   -  

Sample 14 0.06 0.49 0.18 0.54 0.10 9.4 88.8 4.8 7.41 173.3 1.23 24.1 1.39 10.8 

Note: 

* The values provided here are the average of two independent measurements of each 

sample.         
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Table 3. Lab and field measurements on 12/06/2023. 

Measurements from Dr. Thinesh's lab* Field sensor readings * CAWAQ 

Parameters 

Ammonia 
Nitrogen (NH

3
-N) 

<0.46mg/L 

Nitrite 
Nitrogen (NO

2
-

N) 
<1.1mg/L 

Nitrate Nitrogen 

(NO
3

-
-N) 

<1.1mg/L 

Phosphate 

(PO
4

3-
) 

<0.66mg/L 

Total 
Nitrogen 

(N) 
< 10mg/L 

COD 
(mg/L) 

Temp 
<95 

o
F 

DO 
>3 mg/L 

pH 
6.0~8.5 

Conductivity 
<2500 µS/cm 

Ammonia 
mg/L 

Turbidity 
<75 
NTU 

Nitrate 
mg/L 

E. coli  
<126 

MPN/100ml 

Name of test 

reagent TNT 832 TNT 841 TNT 835 TNT 826 

PhosVer 

Rea. TNT 821         

Measurement 

range 2.0-47.0 2.0-90.0 0.23-13.50 1.0-16.0 0.0-2.5 

3.0-

150.0         

Sample 1  -   -   -   -   -   -   -   -   -   -   -   -   -   -  

Sample 2 0.08 0.63 0.50 2.02 0.39 52.2 67.1 2.4 7.69 542.5 0.34 6.2 1.53 126.7 

Sample 3 0.14 0.52 0.32 1.93 0.13 35.8 64.1 1.1 6.14 4440.5 7.35 6.3 2.76 14.2 

Sample 4  -   -   -   -   -   -   -   -   -   -   -   -   -   -  

Sample 5 0.03 0.48 0.31 1.65 0.13 43.9 67.1 0.6 6.75 14361.0 9.79 14.0 3.11 56 

Sample 6 0.49 0.22 0.21 1.00 0.07 17.2 64.3 1.3 7.24 347.7 0.28 12.6 1.13 30.9 

Sample 7 0.42 0.60 0.34 2.01 0.28 30.4 66.7 1.3 7.06 13983.5 8.96 20.7 2.45 1732.9 

Sample 8 0.71 0.60 0.31 1.74 0.26 62.4 65.7 1.1 6.81 26930.0 19.37 8.0 3.64 1119.9 

Sample 9 0.12 0.57 0.21 0.67 0.99 13.7 65.0 0.9 7.34 1208.5 0.26 26.3 0.81 1413.6 

Sample 10  -   -   -   -   -   -   -   -   -   -   -   -   -   -  

Sample 11 0.16 0.59 0.45 1.22 0.58 29.8 63.7 0.9 7.34 452.5 0.35 14.6 0.84 23.1 

Sample 12  -   -   -   -   -   -   -   -   -   -   -   -   -   -  

Sample 13  -   -   -   -   -   -   -   -   -   -   -   -   -   -  

Sample 14 0.11 0.62 0.31 0.55 0.19 17.8 67.0 5.4 7.36 5211.5 2.98 17.8 1.50 27.2 

Note: 

* The values provided here are the average of two independent measurements of each 

sample.         
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Table 4. Lab and field measurements on 01/30/2024. 

Measurements from Dr. Thinesh's lab* Field sensor readings * CAWAQ 

Parameters 

Ammonia 
Nitrogen (NH

3
-N) 

<0.46mg/L 

Nitrite 
Nitrogen (NO

2
-

N) 
<1.1mg/L 

Nitrate Nitrogen 

(NO
3

-
-N) 

<1.1mg/L 

Phosphate 

(PO
4

3-
) 

<0.66mg/L 

Total 
Nitrogen 

(N) 
< 10mg/L 

COD 
(mg/L) 

Temp 
<95 

o
F 

DO 
>3 mg/L 

pH 
6.0~8.5 

Conductivity 
<2500 µS/cm 

Ammonia 
mg/L 

Turbidity 
<75 
NTU 

Nitrate 
mg/L 

E. coli  
<126 

MPN/100ml 

Name of test 

reagent TNT 832 TNT 841 TNT 835 TNT 826 

PhosVer 

Rea. TNT 821         

Measurement 

range 2.0-47.0 2.0-90.0 0.23-13.50 1.0-16.0 0.0-2.5 

3.0-

150.0         

Sample 1 0.00 0.74 0.64 0.97 0.38 66.7 52.7 6.2 5.08 10.2 0.36 62.5 3.29 53.8 

Sample 2 0.00 0.76 0.59 1.02 0.36 65.9 53.2 6.7 5.15 10.8 0.38 60.3 5.72 61.3 

Sample 3 0.00 0.23 0.53 0.56 0.10 21.4 51.8 5.5 6.48 5.9 0.57 195.1 1.94 96.0 

Sample 4 0.03 0.40 0.63 1.43 1.10 36.4 54.2 2.1 6.38 24.7 1.43 442.6 1.79 178.9 

Sample 5 0.00 0.75 0.59 1.07 0.51 47.9 54.5 3.7 6.17 23.0 0.88 401.6 2.78 488.4 

Sample 6 0.01 0.46 0.43 1.44 0.23 33.0 53.6 4.8 6.24 53.2 0.50 96.5 9.75 25.9 

Sample 7 0.00 0.76 0.69 1.23 0.40 50.6 53.0 7.8 6.33 30.5 0.79 121.6 6.81 816.4 

Sample 8 0.00 0.92 0.61 1.28 0.45 69.5 53.6 5.4 5.59 48.3 0.71 112.0 4.87 52.9 

Sample 9 0.00 0.90 0.62 1.22 0.38 72.7 52.3 6.9 5.54 18.5 0.52 73.8 6.22 67.0 

Sample 10 0.00 1.02 0.58 1.43 0.51 71.2 53.2 6.8 5.64 18.2 0.9 71.4 7.39 33.1 

Sample 11 0.56 1.06 0.62 2.34 0.72 52.8 53.2 3.1 6.93 29.3 4.48 379.0 5.85 228.2 

Sample 12 0.00 0.49 0.53 1.65 0.62 46.3 55.5 7.8 7.34 7.7 1.34 948.0 1.81 77.1 

Sample 13 0.00 0.97 0.69 2.68 2.22 81.1 52.9 4.4 7.65 47.5 1.07 333.5 5.21 770.1 

Sample 14 0.00 0.47 0.72 0.81 0.27 32.05 56.7 8.7 5.79 35.4 0.57 91.8 5.86 156.5 

Note: 

* The values provided here are the average of two independent measurements of each 

sample.         
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Table 5. Lab and field measurements on 03/22/2024. 

Measurements from Dr. Thinesh's lab* Field sensor readings * CAWAQ 

Parameters 

Ammonia 
Nitrogen (NH

3
-N) 

<0.46mg/L 

Nitrite 
Nitrogen (NO

2
-

N) 
<1.1mg/L 

Nitrate Nitrogen 

(NO
3

-
-N) 

<1.1mg/L 

Phosphate 

(PO
4

3-
) 

<0.66mg/L 

Total 
Nitrogen 

(N) 
< 10mg/L 

COD 
(mg/L) 

Temp 
<95 

o
F 

DO 
>3 mg/L 

pH 
6.0~8.5 

Conductivity 
<2500 µS/cm 

Ammonia 
mg/L 

Turbidity 
<75 
NTU 

Nitrate 
mg/L 

E. coli  
<126 

MPN/100ml 

Name of test 

reagent TNT 832 TNT 841 TNT 835 TNT 826 

PhosVer 

Rea. TNT 821         

Measurement 

range 2.0-47.0 2.0-90.0 0.23-13.50 1.0-16.0 0.0-2.5 

3.0-

150.0         

Sample 1 0.08 0.38 0.74 1.04 0.28 55.5 59.3 5.9 5.99 72.4 0.36 29.9 1.07 2419.6 

Sample 2 0.16 0.25 0.74 1.25 0.36 54.7 59.3 6.4 5.37 52.7 0.50 33.3 1.79 >2419.6 

Sample 3 0.32 0.32 0.49 0.90 0.48 32.3 59.3 5.5 6.24 189.6 0.46 25.7 0.41 >2419.6 

Sample 4 0.27 0.62 0.81 1.90 2.20 43.5 59.0 4.6 6.15 117.5 1.06 56.6 0.91 >2419.6 

Sample 5 0.16 0.55 0.75 1.22 0.89 40.7 60.0 7.3 5.91 98.4 0.58 43.0 1.31 >2419.6 

Sample 6 0.06 0.21 0.39 0.90 0.46 30.3 59.7 6.3 5.77 90.8 0.63 55.3 1.00 >2419.6 

Sample 7 0.25 0.81 0.88 1.92 1.10 58.5 59.9 6.7 5.75 99.9 0.97 75.4 2.30 >2419.6 

Sample 8 0.18 0.82 1.02 1.97 0.90 51.3 59.3 6.9 5.68 89.0 0.85 65.4 2.29 >2419.6 

Sample 9 0.32 0.64 0.89 1.82 0.45 53.2 59.1 7.4 6.34 70.1 0.59 59.7 2.58 >2419.6 

Sample 10 0.16 0.34 1.10 1.86 0.87 52.6 59.1 6.0 6.77 128.9 0.65 38.8 2.89 >2419.6 

Sample 11 0.21 0.42 0.85 1.80 0.72 53.1 59.5 5.8 6.53 122.2 1.04 31.3 1.96 >2419.6 

Sample 12 0.25 0.39 0.97 2.38 0.85 62.6 59.7 5.1 6.78 118.1 1.36 40.5 2.30 >2419.6 

Sample 13 0.53 0.45 1.08 2.72 1.40 68.6 61.4 6.4 7.03 143.1 1.19 20.7 2.62 >2419.6 

Sample 14 0.07 0.40 0.24 1.26 0.10 21.6 62.8 8.4 6.37 140.1 1.60 17.4 2.48 129.1 

Note: 

* The values provided here are the average of two independent measurements of each 

sample.         
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As shown in Table 1, Table 2, Table 3, Table 4, &Table 5, the measurements over 

the criteria are highlight in red. The elevated Phosphate (PO4

3-
) and E. coli were found in 

water samples collected in December, January, and March 2023. Due to extreme drought 

and heat during August to November 2023, the abnormal conductivities were found in 

December 2023. The lower DO occurs when the flow rate is small. 

Water samples with both high and low E. coli were selected to perform Human 

qPCR marker analysis, results of the analysis are shown in Table 6. Sites 5, 7 and 13 

showed higher human qPCR marker (levels > 525 copies/100 ml), which indicated the 

potential contribution of human fecal contaminants from the OSSFs operating in those 

areas. Further analysis at site 7 showed that qPCR remained at higher level although E. 

Coli at site 7 on 05/19 and 07/06 were below the level of concern (levels <126 MPN/100 

mL). Therefore, we identified that the site 7 is a potential hotspot with failing OSSFs and 

should be considered for fixing the existing OSSFs as a BMP approach.  

Table 6. qPCR analysis at different sites. 

Date Site Copies/ 100 ml filter E. Coli MPN/100 mL 

7/6/2023 Sample 2 380 1413.6 

11/20/2023 Sample 2 615 126.7 

3/22/2024 Sample 2 2152 >2419.6 

    

7/6/2023 Sample 4 902 >2419.6 

1/30/2024 Sample 4 532 178.9 

3/22/2024 Sample 4 1346 >2419.6 

    

7/6/2023 Sample 5 4881 >2419.6 

1/30/2024 Sample 5 2514 56 
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3/22/2024 Sample 5 78560 >2419.6 

    

5/19/2023 Sample 7 18730 <1.0 

7/6/2023 Sample 7 951 68.2 

11/20/2023 Sample 7 105723 1732.9 

1/30/2024 Sample 7 1825 816.4 

3/22/2024 Sample 7 13511 >2419.6 

    

7/6/2023 Sample 8 880 365.4 

11/20/2023 Sample 8 687 1119.9 

3/22/2024 Sample 8 2477 >2419.6 

    

5/19/2023 Sample 13 15778 >2419.6 

1/30/2024 Sample 13 1233 770.1 

3/22/2024 Sample 13 17800 >2419.6 

 

2 Results of Machine Learning (ML) Models  

Models and algorithms used in this study were implemented in Python 3.7 

programming language. The LSTM model was built with Pytorch 2.1 (https://pytorch.org/) 

while IG and GSHAP algorithms were implemented using Captum (https://captum.ai). 

Three metrics, namely coefficient of determination (R2), root mean square error 

(RMSE) and mean absolute error (MAE), defined by equations Error! Reference source 

not found., Error! Reference source not found. and Error! Reference source not found. 

were applied to quantitatively evaluate the performance of the proposed models. R2 is much 

informative in regression analysis evaluation (Chicco et al., 2021). The value of R2 of a 

best model can achieve 1, representing the predicted values exactly match the true values. 

The negative R2 appears when the models have worse predictions than the baseline model 

https://pytorch.org/
https://captum.ai/
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which always predicts the mean of the targets. RMSE is sensitive to outliers while MAE 

describes only the average magnitude of the errors with a linear rule, ignoring their 

direction (Willmott and Matsuura, 2006). According to their characteristics, the 

performance of the applied models can be sufficiently assessed by combining these metrics. 

 𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑥𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)
2𝑛

𝑖=1

 (1) 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑥𝑖)

2𝑛
𝑖=1

𝑛
 (2) 

 𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|
𝑛
𝑖=1

𝑛
 (3) 

where, 𝑥𝑖 is the predicted value at the 𝑖-th time step, 𝑦𝑖 is the corresponding observation, 

𝑦̅𝑖 is mean of the observed values and 𝑛 is number of time steps. 

2.1 Results of ML DO Models 

2.1.1. Current Hourly DO Prediction 

As shown in Table 7, the performance of the LSTM and TL-LSTM models was 

superior to the MLR models for both datasets. Figure 12 demonstrates the comparison of 

7 features models at both locations. The best performance (Figure 12 (b)) was achieved by 

the LSTM model with 7 features of the PIB dataset, and have the R2, RMSE and MAE 

were 0.982, 0.263 and 0.149, respectively. Although the R2 values of the MLR models at 

PIB were acceptable (R2 = 0.795), the predictions in Figure 12 (a) were not agree well by 

simply repeating the previous DO observations. For the SWB dataset, the R2 values of the 

TL-LSTM models were 0.043 and 0.128 higher than those of the LSTM models, and 0.678 
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and 0.617 higher than those of the MLR models with 2 or 7 input features, respectively. 

This indicated that the LSTM model learned about the spatial-temporal dynamics of DO 

and can predict hourly DO with TL-LSTM in the Neches River.  
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Figure 12. Comparison of models for current hourly DO predictions. 

Table 7. Performance of the DO models for 1-hour prediction task. 

Dataset Model Features R2 RMSE (ml/L) MAE (ml/L) 

PIB 

MLR 
2 0.795 0.883 0.603 

7 0.795 0.884 0.607 

LSTM 
2 0.981 0.267 0.154 

7 0.982 0.263 0.149 

SWB 

MLR 
2 0.149 0.609 0.462 

7 0.176 0.600 0.455 

LSTM 
2 0.774 0.314 0.234 

7 0.665 0.382 0.287 

TL-LSTM 
2 0.817 0.283 0.222 

7 0.793 0.301 0.235 

 

2.1.2. 14-day Hourly DO Forecast 

The visual comparisons of rolling forecasts with both the PIB and SWB datasets 

were shown in Figure 13. The outcomes summarized in Table 8 revealed that the LSTM 

and TL-LSTM models outperformed the MLR models with higher accuracy for the 14-day 

prediction task. The best models for the PIB and SWB were the LSTM model (R2=0.891) 

and the TL-LSTM model (R2=0.502), respectively. In particular, the R2 values of the TL-

LSTM models with 2 and 7 features at SWB increased by 42.5% and 23.3% compared to 

those of the LSTM models. These results indicated that the general knowledge of DO 

dynamics learned from the PIB dataset were useful for building DO models for the SWB 

dataset. In addition, the forecasts generated by the LSTM and TL-LSTM models with 2 

input features were capable to follow the general trend of DO observations (Figure 13 (a)). 

Compared to 2 features, the LSTM and TL-LSTM models employing 7 features obtained 
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slightly higher R2 and smaller RMSE and MAE. Moreover, more sharp changes in DO 

peaks and troughs were captured, particularly during the period from 03/03/2022 to 

03/15/2022 at the PIB (Figure 13 (b)). Furthermore, the LSTM and TL-LSTM models 

maintain a satisfactory performance during the 14-day forecast applying the predicted DO 

as input. It demonstrates models could understand the potential relationship between DO 

changes and input features. On the contrary, the forecasts generated by the MLR models 

only oscillated around the mean of the initial 24-hour DO inputs, and its shape resembled 

that of the initial inputs (Figure 13 (c)). The deficient performance of the MLR model 

demonstrated the limitation of the MLR models on the longer period prediction.  

Table 8. Performance of the DO models for 14-day hourly forecast. 

Dataset Model Features R2 RMSE (ml/L) MAE (ml/L) 

PIB 

MLR 
2 0.238 1.510 1.133 

7 0.288 1.459 1.111 

LSTM 
2 0.802 0.769 0.592 

7 0.891 0.572 0.327 

SWB 

MLR 
2 -0.217 0.670 0.513 

7 -0.109 0.639 0.487 

LSTM 
2 0.334 0.496 0.387 

7 0.407 0.468 0.363 

TL-LSTM 
2 0.476 0.440 0.346 

7 0.502 0.428 0.337 
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Figure 13. Comparison of models for 14-day hourly DO forecasts. 

 

2.2 Results of ML Turbidity Model 

Table 9 shows the performance of the Attention-based Encoder & Decoder model 

for the three split datasets. The three errors were calculated with predicted values of the 

next time-step (1 hour) and the next 120 time-steps (5 days), respectively. The test set 

obtained the best MAE, MAPE, and RMSE equal to 0.887, 3.74%, and 1.175 for the next 

time-step, while 2.133, 8.837%, and 7.853 for total 5-day predicted values, respectively. 

Considering the shortest length of the test set, the model performance was also evaluated 

on the training and validation sets and the results still showed acceptable error levels. The 

predictions of the next step for the test set are visualized in Figure 14Error! Reference 

source not found.. The predictions were close to the historical values and captured the 

fluctuation caused by tides. In order to show our proposed methods more intuitively and 
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clearly, some of 5-day predicted results for the three datasets are plotted in Figure 15. 

Although the predicted sequential values did not manage the sharp changes in hourly data, 

they captured the general trend of turbidity that could give more suggestions than the next 

time-step prediction for the public. 

Table 9. A comparison of the errors of the training set, the valid set, and the test set. 

Dataset 
Calculated 

prediction length 

Metrics 

MAE (NTU) MAPE (%) RMSE (NTU) 

Training 

set 

Next time-step 1.707 5.064 7.357 

All 120 time-steps 2.363 7.146 22.733 

Valid set 
Next time-step 1.782 6.929 6.181 

All 120 time-steps 3.055 11.410 15.293 

Test set 
Next time-step 0.887 3.740 1.175 

All 120 time-steps 2.133 8.837 7.853 

 

According to earlier research, most studies focus on the one-time-step turbidity 

prediction with machine learning models. Wang et al. (Wang et al., 2021) used tidal average 

significant wave height and tidal range to predict hourly turbidity by Artificial Neural 

Network (ANN), Support Vector Machine (SVM), and Genetic Programming (GP) at a 

coastal bay. The best RMSE is equal to 10.83 obtained by the ANN model. Zhang et al. 

(Zhang et al., 2021) used wind field, air temperature, and rainfall data to predict hourly 

turbidity in a lake by the Random Forest (RF) model, achieving 39.69% MAPE. Rele et al 

(Rele et al., 2023) built an Autoregressive integrated moving average (ARIMA), Long 

Short-Term Memory (LSTM), and Generalized additive model (GAM) to predict daily 
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turbidity in a river according to the previous 30-day turbidity, rainfall, water level, 

temperature, and total global solar exposure data. The MAE and RMSE of the three models 

ranged from 5.91 to 11.5 and 9.46 to 17.27, respectively. Then they proposed a meta-model, 

integrated ARIMA, LSTM, and GAM, which can auto select the optimal model at each 

time step and improve the performance to 1.67 MAE and 2.31 RMSE. Compared with their 

results, the errors of the next time-step in this study were relatively small. The errors of all 

time-steps were much higher than those of the one-time-step prediction, but they were still 

compatible and useful to provide a 5-day trend of turbidity changes for practical application. 

 
Figure 14. Visualization of the next time-step (1 hour) prediction of the test set. 

  

 
Figure 15. Visualization of 5-day forecasting results of the training set, valid set, and test set. 
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3 Results of SWMM & MOPUS model 

The watersheds modeled by SWMM were delineated from 1-m Digital Elevation 

Model (DEM) using tools in the HEC-HMS modeling suite. The drainages thus derived 

then underwent manual adjustments using Google Earth Pro. (Figure 16) 

  

Figure 16. Watershed delineated using HEC-HMS (left) and after manual editing (right). 

The final watershed boundaries and flow network were integrated into EPA-SWMM to 

create schematics of drainage (see an example in Figure 17). The area and width of the sub-

catchments were determined from Google Earth Pro.  For simplicity, each watershed was 

assumed to comprise 10% impervious land and 5% zero impervious land. Default values 

were used for the rest of the parameters. The schematization of subcatchments at each site 

can be found in Appendix A.  
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Figure 17. Schematization of watersheds in EPA-SWMM for sites 12-14. 

The models were run to produce runoff simulations for over 1 year (1 January 2023 

– 31 March 2024). The baseline simulations were done using rainfall data collected from 

CoCoHaRS website (Community Collaborative Rain, Hail and Snow Network, Figure 18 

), and the models underwent light calibration by adjusting Manning’s n. In the scenario 

analysis, design rainfall was generated for return periods 25-year, 50-year and 100-year 

following Kiprich’s method. The model is simulated for these design storms and 

corresponding runoffs are generated. 
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Figure 18. Example time series of rainfall from the CocoHaRS station and runoff simulations by 

EPA-SWMM.   

MOPUS model is based on two conceptual equations shown in Figure 19.  These 

equations incorporate two empirical coefficients. In this study, these coefficients were 
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adjusted to allow the maximum bacteria concentration from model simulations to match 

the observations collected by Lamar University (Figure 19, lower right panel).  

 

Figure 19. MOPUS Model with calibrated coefficients based on observed bacterial concentrations.  

The impacts of BMPs on simulated peak bacterial concentrations are summarized 

in Table 10, where aggregate peak bacterial simulations by the coupled modeling system 

without and with BMPs are compared for each of the 14 sites. The percentage reduction in 

runoff ranges from 0% at site 14 to 26% at site 6.  

Table 10. Reduction in runoff peaks after BMP implementation for 2023-2024, with default BMP 

configuration. 

Sites #   
Runoff-Baseline 

[cfs] 

Runoff – BMP 

[cfs] 

Reduction  

[%] 

1 3.60 3.40 5.56 

2 2.17 2.00 7.83 

3 0.81 0.80 1.23 
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4 10.71 10.30 3.83 

5 2.22 2.10 5.41 

6 1.50 1.40 6.67 

7 12.94 12.40 4.17 

8 1.51 1.40 7.28 

9 19.01 18.20 4.26 

10 4.44 4.20 5.41 

 

The impacts of BMPs on simulated peak bacterial concentrations are summarized in Table 

11, where aggregate peak bacterial simulations by the coupled modeling system without 

and with BMPs are compared for each of the 14 sites.  The percentage reduction in runoff 

ranges from 0% at site 14 to 26% at site 6.  

Table 11. Reduction in bacteria concentrations after BMP implementation for 2023-2024, with 

default BMP configuration. 

Site # 
Max Bacteria Conc.-

Baseline 
Max Bacteria Conc.-BMP Maximum % Reduction 

1 27 25 6 

2 309 294 5 

3 367 365 1 

4 400 366 8 

5 302 295 2 

6 61 45 26 

7 926 903 3 

8 2381 2271 5 

9 1542 1255 19 

10 67 63 6 

11 356 339 5 

12 139 133 4 

13 19667 15885 19 

14 99 98 0 
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In order to assess the dependence of efficacy of BMPs on their size and infiltration 

properties, three hypothetical BMP configurations were created with different Berm height 

and soil permeability (Table 12).  

Table 12. Three BMP configuration used in sensitivity analysis. 

 

The outcomes from the sensitivity analysis are shown in Table 13. Increasing capacity of 

the BMP results in increased percentage reduction in runoff, and smaller changes in the 

reduction in bacteria loading.  

Table 13. Percentage reduction in runoff and bacteria concentration with each hypothetical BMP 

configuration. 

BMP-1 BMP-2 BMP-3 

% reduction % reduction % reduction 

Runoff Bacteria Conc Runoff Bacteria Conc Runoff Bacteria Conc 

24 26 25 26 24 26 

1 26 1 26 1 26 

74 29 45 14 74 29 

54 20 48 16 54 20 

0 0 0 0 0 0 

44 10 11 2 11 2 

42 7 26 7 34 7 

48 49 48 28 48 49 

35 12 18 6 24 8 

0 17 0 17 0 17 

11 3 6 2 11 3 

BMP 1 BMP 2 BMP 3

Berm height 100 100 1000

Biofiltration Media Thickness 650 650 650

Porosity 0.5 0.5 0.6

Field capacity 0.2 0.4 0.4

Underdrain/ gravel base height 650 650 650

Soil Mix Property
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17 5 17 5 17 5 

39 28 39 27 39 28 

10 3 10 3 10 3 
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Chapter IV 

Summary 

 

Five runs of water sampling and water quality measurements have been conducted 

to assess the bacteria pollution in the drainage system after the main rain events. The results 

demonstrate the elevated nutrient and E.coli were observed in the system. The bacteria 

source tracking showed that the Human qPCR marker at sites 5, 7, 13 were higher than the 

criteria, which indicated the potential contribution of human fecal contaminants from the 

OSSFs. To understand how the bacteria from OSSF wastewater affect the water quality in 

Neches River, the outfalls from sample sites were identified. Along the Neches River, site 

14 outfall is upstream of TCEQ 20774; sample sites 1&2 outfalls are upstream at TCEQ 

10575, sample sites 3,4,5&6 outfalls are upstream of TCEQ 10570, and site 7 outfall is 

upstream of TCEQ 10566. The samples sites 8&9&10 discharges to the Bessie Heights Oil 

and Gas Field before it reaches the TCEQ 10563. The sample sites 11&12&13 discharge 

to the Old River Cove before it reaches the Sabine Lake. The elevated enterococci at all 

monitoring sites in January 2023, and at TCEQ 10575 in year 2023, at TCEQ 10575 in 

January and October. The water quality in Neches River response to the nonpoint source 

we found in the drainage system accordingly. Therefore, the failing OSSFs is one of the 

bacteria pollution origins.  
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Analyzing the YSI water quality data collected at the SWB with innovative machine 

learning technologies, we developed the LSTM models with and without transfer learning 

method to predict hourly DO for current and consistent 14-day in rivers to support water 

quality management. The contributions of this study were concluded as following: (1) This 

was the first study to investigate the ability of the LSTM model to predict hourly DO 

concentrations up to 14 days under different hydro-meteorological conditions, The LSTM 

model performed much better than the traditional MLR model, where its R2 achieved up to 

0.98 and 0.89 for current and 14-day hourly DO forecasts, respectively; (2) The efficacy of 

transfer learning algorithm was proved in solving the problem of insufficient data volume 

for the LSTM model. The relationship between DO and input features obtained by the large 

dataset can enhance the performance of the TL-LSTM model with the small target dataset 

although the improvement had limits due to different environmental conditions at two 

locations; (3) Previous DO was identified as the most important feature at both locations 

and water temperature was also critical for forecasting the general trend of DO changes 

within 14 days. The Attention-based Encoder & Decoder model associated with the GRU 

was applied to predict hourly turbidity in the following 5 days with hydro-meteorology 

measurements. Compared with earlier research, the MAE, MAPE, and RMSE of the next 

time-step predictions are acceptable. This model also can provide the general trend of 

turbidity changes within 5 days. The capability of forecasting 5-day hourly turbidity can 

be applied to local water management systems with 5-day gage height and rainfall 

forecasting data from NOAA.  
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A coupled EPA-SWMM/MOPUS system was established to help assess the 

potential of infiltration BMPs, specifically bioretention cells, in alleviating the bacteria 

loading problems if installed in the upstream of watersheds with high concentration of 

OSSFs.  The EPA-SWMM model was implemented for 14 sites in different tributaries of 

the Neches River.  For each site, the model was used to simulate runoff using observed 

rainfall over a 1-year window, and the resulting runoff time series was ingested into the 

MOPUS system to create time series of bacteria loading. Using a default configuration of 

bioretention cell leads to 1-88% reductions in peak simulated runoff, and 0-26% reductions 

in peak bacteria loading.  Sensitivity experiments suggest that increasing capacity of the 

BMP leads to larger reductions in peak runoff but relatively modest reductions in bacteria 

loading.   
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APPENDIX 1: Schematics of watersheds in EPA-SWMM  

 

 

Figure A-1: Schematization of watersheds in EPA-SWMM for sites 1 and 2. 
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Figure A-2: Schematization of watersheds in EPA-SWMM for site 3. 

 

 

 

Figure A-3: Schematization of watersheds in EPA-SWMM for site 4. 



49 

 

 

 Figure A-4: Schematization of watersheds in EPA-SWMM for site 5. 
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Figure A-5: Schematization of watersheds in EPA-SWMM for site 6. 
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Figure A-6: Schematization of watersheds in EPA-SWMM for site 7. 

 

Figure A-7: Schematization of watersheds in EPA-SWMM for site 8. 
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Figure A-8: Schematization of watersheds in EPA-SWMM for site 9. 
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Figure A-9: Schematization of watersheds in EPA-SWMM for site 10. 
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Figure A-10: Schematization of watersheds in EPA-SWMM for site 11. 
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Figure A-11: Schematization of watersheds in EPA-SWMM for sites 12 and 13. 
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Figure A-12: Schematization of watersheds in EPA-SWMM for site 14. 
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APPENDIX B: Pictures for outreach and education activities 

 

Fig. B_1: Research team met the local groups to discuss the survey locations (March 2023) 

 

Fig. B_2: The student collected the water sample in the drainage ditch. 
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Fig. B_3: TOWA representative (Randy Chelette) demonstrated to students how to collect samples 

from the creek.  
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Fig. B_4: Presentation at ASCE EWRI 2024 conference at, Milwaukee, Wisconsin in May 2024 
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Fig B_4: Presented our field measurement to high school summer camp students in June 2024.  
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Fig B_5: high school summer camp students listened to our presentation in June 2024 

 

 

 


