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EXECUTIVE SUMMARY

The goal of this study is to determine the origin and transport pathways of the fecal
bacteria in the region and assess BMPs as countermeasures to alleviate the excess loading.
The outcome of the project is to reduce bacteria loading, and improved water quality.
Cooperated the available OSSF data with local agencies suggestion, we conducted a field
survey to identify 14 critical water sampling locations. Five runs of water sampling and
water quality measurements demonstrate the elevated nutrient and E.coli were observed in
the system. The bacteria source tracking showed that the Human qPCR marker at sites 5,
7, 13 were higher than the criteria, which indicated the potential contribution of human
fecal contaminants from the OSSFs. The elevated enterococci at five TCEQ monitoring
sites response to the nonpoint source we found in the drainage system accordingly.
Therefore, the failing OSSFs is one of the bacteria pollution origins. We suggest that fix
OSSFs at site 5, 7 and 13 is one of the BMPs to decrease the bacteria.

A coupled EPA-SWMM/MOPUS system was established to help assess the
potential of infiltration BMPs, specifically bioretention cells, in alleviating the bacteria
loading problems if installed in the upstream of watersheds with high concentration of
OSSFs. Using a default configuration of bioretention cell leads to 1-88% reductions in
peak simulated runoff, and 0-26% reductions in peak bacteria loading. Sensitivity
experiments suggest that increasing capacity of the BMP leads to larger reductions in peak

runoff but relatively modest reductions in bacteria loading.
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Chapter 1
Introduction

1 Background Information

The Neches River in Southeast Texas has been reported (TCEQ, 2010) that the
bacteria indicator, namely Escherichia coli (E. coli) in freshwater or Enterococci in
saltwater excessed the criterion of 126 mpn/100ml or 35 mpn/100ml, respectively. Recent
flooding caused the increase of the fecal bacteria loading along the Lower Neches River
Tidal is a major water quality concern of the region. This increase can be explained by an
increase in failures of on-site sewage facilities (OSSFs) that are an aggregate result of aging
facilities and more frequent occurrences of extreme flooding in recent years. A total
maximum daily load (TMDL) and implementation plan (I-Plan) to reduce bacteria and
protect recreational safety in the Neches River Tidal are being developed by the
stakeholders and Texas Commission on Environmental Quality (TCEQ,
https://www.tceq.texas.gov/waterquality/tmdl/nav/118-nechestidal-bacteria). The study
(TCEQ, 2022) has illustrated that bacteria load contributions from regulated and
unregulated stormwater sources follows a pattern of higher concentrations in the water
body as the first flush of storm runoff enters the receiving stream and declines as runoff
washes bacteria from the land surface. The bacteria released from OSSFs can travel
considerable distances through saturated soils and contaminate groundwater, terrestrial
runoff, and coastal waters. If left unmitigated, the rising presence of bacteria along Neches

River and in coastal waters can pose a serious public health risk, and this risk may amplify



with increasing frequency and intensity of flood events, and by sea-level rise. Therefore,
there is an urgent need to determine the origin and transport pathways of the bacteria in the
region and assess BMPs as countermeasures to alleviate the excess loading.

The project was a joint effort among Lamar University, UT Arlington, and Texas A
& M, seeking answers to this need under Coastal Hazards and Resiliency Planning category.
In this project, we focus on the Neches River Tidal watershed to a) conduct a field survey
on characteristics of OSSFs to identify the criteria that help us find bacteria loading hot
spots; b) assess the bacteria impact by analyzing the water quality data collected at the Salt
Water Barrier using YSI sensors using innovative machine learning technologies, running
water samples at locations where the most pollution source origin are discharged and, and
applying innovative lab technology to track fecal bacteria sources from the selected water
samples, c¢) couple the established SWMM model with an offline bacteria life cycle-
MOPUS model for understanding bacteria transport pathways and assessing BMPs to
alleviate excess loadings. Three universities incorporated in parallel to conduct three goals

as three project tasks.

2 Study Areas

The research team from Texas A&M used the OSSF permit data collected from the
TCEQ OARS database (data as of December 2021) to develop a map showing OSSF
inventory and updated parcels as shown in Chapter 12Figure 1. The map included circles

with six distinct colors indicating the age of the OSSFs when available from the permit or



building records as well as sewer area and location of TCEQ permitted wastewater outfalls
(discharge points). Figure 2 show a map of 100-year floodplain data from the FEMA
National Flood Hazard Layer (NFHL) digital database, the Soil Survey Geographic
Database (SSURGO) soil data for the project area, and the OSSF inventory.

After consulted with the representatives of TOWA (Texas Onsite Wastewater
Association) and the Orange County Health Department to determine areas where OSSFs
may be “failing” due to age and/or limiting soil conditions (shallow depth to water table
and clay soil) with the 100-year floodplain. Seven “hot” areas were identified for
conducting walk-through site visits on March 14 and 15, 2023. The field survey evaluated
the operating conditions of the OSSFs and followed the water flow through the creek to
determine adequate and safe locations for water quality sampling. Field observations did
not identify any major failures of OSSF (no sewage on the ground or sewer odor in the
area), however in two locations (sampling points #2 and #13), presence of algae was
noticed indicating potential contamination from the subsurface movement of partially
treated wastewater (OSSF discharges). Students from Lamar were trained for collecting
water samples using sampling bottles and sampling locations (1 — 14) were marked on the
map. Figure 3 shows the seven areas for site visits and 14 locations that were selected for

water quality sampling events.
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Figure 2. Map of 100-year floodplain, SSURGO soil maps and OSSF inventory.
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Chapter 11
Methods
1 Field Water Sampling

After major rain events as shown in Figure 4, the field sampling was conducted to
collect the1000-ml water samples and stored in the cooler immediately. At each site, the
YSI-ProDSS system was used to measure the field temperature, DO, pH, conductivity,
Turbidity, Ammonia-Nitrogen, and Nitrate-Nitrogen. The “wastewater Sampling Form”
was filled to record the site condition and measured data. Figure 5 shows a sample sheet
on 07/06/2023. The water samples were sent back to laboratory in less than 6-hours to
conduct the E. coli measurement.

Following the “Pre-processing of water samples for quantitative PCR” provided
by Dr. Terry Gentry from Texas A&M University Soil & Aquatic Microbiology Laboratory,
the sample was pre-processing with disposable membrane filtration units (filter base,
polycarbonate filter [0.4 pm] with 47 mm diameter, and 100 mL capacity funnel) in the lab
and stored the folded filters in the storage tube at -80°C until shipment to lab for DNA
extraction and purification. In addition, the Ammonia-Nitrogen, Nitrite-Nitrogen, Nitrate-
Nitrogen, Total Nitrogen, Phosphate, COD were also measured in the laboratory to

understand the water chemistry.



TX-OR-6 : Vidor 7.2 N

45
05-19-2023 07-06-2023 11-20-2023
. 140SSF [ —» — 14 0SSF 140SSF  |—s 0::‘3352;2:4
Sample Collection Sample Collection Sample Collection Sample Collection
35 /
£
5 03-22-2024
- 14 OSSF
g - Sample Collection
1
_:‘_a' 2 \‘
8
15
1
05
L sl | L1 I Ll
1/12023 21208 3/12023 4/1/2023 5/1/2023 6/1/2023 7/1/2043 8/1/2023 91203 10/4/2023  11/1/2023 | 12/3/2023 1/1/2024 212024 3p1/2024 4/1/2024
TX-OR-1: Bridge City 1.3 NW
a5
n
35
R
H !
B 25
&
E I
& 2
£
5
S s !
1
]
B ’l{ dL] " ’l'H Jlﬂl H J’ |
. il 1 il Ll L. ol . ﬂ l me b e
§/1/2023 7/1/2023 8/1/2023 9/1/2028  10/1/2023  11/y/2023  12/1/2023 1102024 412024

1/1/2023 2/1/2023 3/1/2023 4/1/2023 5/1/2023

Figure 4. Sampling schedule based on rain fall events.

2/1/2024 3/1/2024



Wastewater Sampling Form

Sample 52
Collector: Jian Tiqr\cl , Amaer duw[agcm
Date: TO\U £ 7/6/202%

Time: | - 65 pm

Recent Weather Conditions: [Q ¢, nY 5@
)

Site Name: Cas 5 St.

Description of the site surrounding and pictures: Ao \#3¢{qt,0q N Slow
Rya sk coloy .

Field measurements:

Temp. DO Conductivity Ammonium Turbidity Nitrate NO3"

(°F) (mg/L) pH (Microseimens/cm) (mg/L) (NTU) (mg/L)

809 (2.5 |75 |RR0,5 |0.¢0 |49 0.33

19 (8.1 |45 |84 | os4 | %oy .57
Quantitative PCR (mL)
lepml.
E. Coli (MPN/100 mL) .
|412.6

Signature Q,Ay,,

Figure 5. Sample of "Wastewater Sampling Form" on 07/06/2023.



2 Machine Learning Models with YSI Data

The Neches River shown in Figure 6 rises east of Colfax (at 32°30' N, 95°45' W)
and flows southeast for 669.49 km to its mouth on Sabine Lake (at 29°58' N, 93°51' W).
The total of 25928.37 km? drainage area with abundant rainfall results in a flow of 7.4 km?
per year (TSHA, 1995a). Saltwater Barrier (SWB) was constructed on the Lower Neches
River, downstream of Beaumont’s drinking water pump station to prevent the intrusion of
the saltwater wedge from the Gulf of Mexico (Pizano-Torres et al., 2017). A complex
EXO2 YSI sensor system was installed at the SWB co-location with USGS station of
08041780 to monitor the water quality, including water temperature, sample depth,
conductivity, turbidity, total dissolved solids (TDS), water pH, chlorophyll, nitrate (NO3-
N) and DO (Qian et al., 2019, 2024). Pine Island Bayou (PIB), the major tributary of Lower
Neches River, rises two miles south of Fuqua (at 30°25' N, 94°44' W) and reaches its mouth
9.66 km north of downtown Beaumont (at 30°10' N, 94°07' W), with approximately 122.31
km long (TSHA, 1995b). A water quality sensor installed at the same USGS station
08041749 monitors real-time water quality measuring water temperature, sample depth,
conductivity, turbidity, TDS, water pH and DO since June 11, 2008 (TCEQ, 2018a).
Discharges obtained from USGS stations of 08041000, 08041749 and 08041780

(https://waterdata.usgs.gov/) are important hydrological characteristics to illustrate the

local hydro-meteorological conditions.
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Figure 6. Locations of YSI water quality sensors and USGS stations
As shown in Figure 6, 15-minute interval gage height and discharge were obtained

from USGS gage station 08041780 (https://waterdata.usgs.gov/). USGS station 08041000

(at 30° 21'20.75" N, 94° 5' 35.65" W) is monitoring water discharge for the upper Neches
River, while USGS station 08041749 (at 30° 10' 43.76" N, 94° 11' 19.66"W) is associated
with the Pine Island Bayou, the main tributary of the Neches River. Hourly rain increment
data at the SWB was collected from St4320 LNVA Saltwater Barrier

(https://dd6.onerain.com/).
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2.2 Machine Learning Model to Predict Dissolved Oxygen (DO)

Recently, approaches utilizing advanced machine learning techniques to predict
water quality with wireless sensor measurements demonstrated high performance (Kim and
Ahn, 2022; Jiang et al., 2023). The machine learning algorithms using sensor data to predict
water quality DO are Support Vector Machine (SVM) (Li et al., 2020; Nong et al., 2023),
Random Forest (RF) (Tiyasha et al., 2021; Ayesha Jasmin et al., 2022), Artificial Neural
Network (ANN) (F. Yang et al., 2021; Azma et al., 2023), Recurrent Neural Network (RNN)
(Y. Liu et al., 2019) and Long Short-Term Memory (LSTM) (Zhi et al., 2021). It is found
that machine learning models outperformed traditional Multiple Linear Regression (MLR)
models due to their capabilities of exploring nonlinear relationships between target and
input features (Csabragi et al., 2017).

RNN and LSTM are widely used deep learning models to solve the prediction
problems with sequence data due to the effective ability of memorizing the previous data
(Greffet al., 2017). LSTM is designed RNN to remember sequences with a data length of
10 or more, avoiding the weakness of the classical RNN in long-term memory ability (Abba
et al., 2020). The special capability comes from three kinds of gates in the LSTM memory
cell, namely forget gate, input gate, and output gate (Huan et al., 2020; P. Liu et al., 2019).
Thus, the LSTM is suitable to develop longer period DO prediction with time series
measurements. To generate a consistent long period DO forecasting, rolling forecast
procedure is employed through continuously repeating the prediction process with updated

future data to provide real-time and dynamic forecast in unstable environment, (Zeller and
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Metzger, 2013). In general, LSTM needs a

_f\.,
=
large quantity of training data to mine the ~—f— SensorData [zAA

4 .
. . . . . . Data Preprocessin
potential relationships with nonlinear inputs, R $

Training Dataset Test Dataset
\
which limits their applications in many p - <
b (- ™
. . s
instances due to under-fitting problem S| LSTM Model Fine-tuned LSTM
E=
) ) 2| G= ;_1. Model by
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Performance J_
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. e %
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14-day hourly DO predictions
(Lumini and Nanni, 2019). Zhu er al. (2021)
Figure 7. The framework of the DO

developed a pre-training DO model based on
prediction model

the bidirectional LSTM (BiLSTM) with a

large dataset of the Lake Taihu in China, and used transfer learning to fine-tune the model
with the target dataset of another lake to increase coefficient of determination (R?) from
0.381 to 0.793.

To develop a LSTM deep machine model and provide a 14-day forecast for local
agencies to make appreciative decisions on water resource planning and exploit
relationships between DO and other sensor measurements under different hydro-
meteorological conditions, the main steps as illustrated in include 1) building the

LSTM model for current hourly DO estimations with different input feature scenarios after
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the comprehensive sensor data analysis, and comparing with a baseline model using
traditional MLR, 2) combining transfer learning to improve the performance of the LSTM
model with insufficient dataset, 3) generating consistent 14-day hourly DO forecasts with

a rolling forecast procedure.

2.3 Machine Learning Model to Predict Turbidity

Machine learning has become a valuable tool for analyzing turbidity due to the
rapid increase in sensor measurements in the aquatic environment. For example, Support
Vehicle Machine (SVM), Fuzzy Inference Systems (FIS), group method of data handling
(GMDH), Genetic programming (GP), Artificial Neural Networks (ANN), and Long Short-
Term Memory (LSTM) models have been applied to predict turbidity in reservoirs, rivers,
and coastal bays, and proved their desirable accuracy (Teixeira et al., 2020; Tsai and Yen,
2017; Wang et al., 2021). Those models are commonly built with rainfall, discharge, and
water level, because heavy rainfall affects turbidity via erosion and subsequent runoff,
increasing sediment loads in water bodies (Leigh et al., 2019). However, the kinds of
literature only predict the current turbidity with other current or previous measurements. To
our best knowledge, no model is built for forecasting a period of turbidity, which is more
useful for local agencies by providing enough time and flexibility for better water resource
management decisions. To predict hourly turbidity in the following days with hydro-
meteorological measurements, discharge, gage height, and precipitation, a multivariate

time series multi-step forecasting framework via an attention-based encoder & decoder

14



structure is applied. The encoder and decoder are well-designed using the Gated Recurrent
Unit (GRU), an advancement of the standard Recurrent Neural Network (RNN) introduced
by Cho et al. (Cho et al., 2014). It uses special gates (update gate and reset gate) to control
the flow of information, which can solve the limitations of standard RNNs on long-term
memory. It is motivated by the Long Short-Term Memory (LSTM) unit but is much simpler
to compute and implement. It has three components: an encoder component, a decoder
component, and a temporal attention layer as an attention component (Bahdanau et al., 2016;
Cho et al., 2014; Du et al., 2020; Zhang et al., 2017). The encoder learns the hidden
representation of input data with arbitrary lengths, which extracts the deep temporal
dependency features from the multivariate time series and then uses the temporal attention
layer to construct latent space variables (temporal attention context vectors). The decoder
generates latent space variables for forecasting future time series values. Figure 8 shows the

graphical illustration of the framework.

3 SWMM & MOPUS Model

EPA’s Stormwater Management Model (EPA-SWMM) is a useful tool in planning
local, regional and national water resources solution by green infrastructures. EPA-SWMM
can determine the reduction of runoff by infiltration and retention over the watershed. Low
impact development, such as green/grey/hybrid infrastructure can be added as a fraction of

impervious area of a specific catchment into EPA-SWMM model by LID control tool.
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MOPUS (McCarthy et al., 2011) is a conceptually based model to calculate wash off and

storage of microorganisms for a catchment.

Forecasting \/\/\/\
Sequential

Decoder
Component

Attention
Component

Encoder

Component

Multivariate

Time Series Data

Figure 8. The sequential-to-sequential forecasting framework via a temporal attention-based

encoder & decoder model.

For each site, EPA-SWMM model is developed for the upstream drainage to
produce runoff simulations under current conditions and with BMPs. Then coupled with
MOPUS model at 14 sites (Figure 9) to assess the contribution of runoff to bacterial loading,

and to determine the potential ability of BMPs (bioretention) to reduce runoff and bacterial

16



loading. These BMP sites were selected to be within areas with a large number of septic
tanks.

=8 : ; i ® Sample Locations

i < OSSF

[ Lower Neches
[ Unioin Canal

| [ Tiger Creek

I [ Grays Bayou

Figure 9. Locations where hypothetical BMPs (bioretention cells) are implemented in SWMM.
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Figure 10. Schematic of coupled modeling system comprised of SWMM and MOPUS.

The coupled modeling system is illustrated in Figure 10. In this system, EPA-

SWMM produces runoff simulations which are ingested into the MOPUS model to produce

time series of bacterial concentration. To determine the impacts of BMPs, various

configurations of BMPs (bioretention cells, Figure 11) were implemented within EPA-

SWMM.
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Figure 11. Configuration of a bioretention cell.

(Source: https://www.cleancoast.texas.gov/documents/5-6-sw-manual.pdf)
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Chapter 111
Results and Discussion
1 Results of Field Water Sampling Measurements

Table 1. Lab and field measurements on 05/19/2023.

Measurements from Dr. Thinesh's lab Field sensor readings CAWAQ
Ammonia Nitrite Nitrogen Nitrate Nitrogen Phospf;ate Total Turbidity E. @l
Nitrogen (NH,-N) (NO,-N) (NO,-N) (PO,") Nitrogen (N) COD  Temp DO pH Conductivity =~ Ammonia <75 Nitrate <126
Parameters <0.46mg/L <1.1mg/L <1.1mg/L  <0.66mg/L <10mg/L (mg/L) <95°F >3 mg/L 6.0~8.5 <2500 pS/cm mg/L NTU mg/L  MPN/100ml
Name of test
reagent TNT 832 TNT 841 TNT 835 TNT 826 PhosVer Rea. TNT 821
Measurement
range 2.0-47.0 2.0-90.0 0.23-13.50 1.0-16.0 0.0-2.,5 3.0-150.0
Sample 1 0.07 0.43 1.01 2.03 0.1 87.8 72.7 1.9 7.75 110.7 0.53 76.1 5.64 1
Sample 2 0.26 0.12 1.18 1.96 0.34 86.7 73.2 0.9 6.79 98.3 0.86 62.8 7.70 1
Sample 3 0 0.06 0.31 0.61 0 24.4 76.0 1.4 7.11 195.5 XXX 7.5 0.91 8.5
Sample 4 0 0.37 0.66 1.56 0.45 56.1 72.8 1.2 7.12 439.4 1.77 21.0 1.80 9.4
Sample 5 0 0.23 0.84 1.34 0 53.7 78.3 3.0 7.07 225.7 0.24 17.5 5.78 <1.0
Sample 6 0 0.64 0.69 1.04 0 71.7 76.1 1.1 7.10 152.0 0.25 12.2 2.64 1
Sample 7 0 0.57 0.58 0.87 0 70.1 77.5 2.9 6.97 273.4 0.16 2.8 1.69 <1.0
Sample 8 0 0.30 0.91 1.15 0 70.1 77.5 0.8 6.79 150.4 0.20 19.6 3.24 2
Sample 9 0 0.15 0.91 1.33 0 65.8 76.8 1.9 6.98 199.4 0.39 21.5 3.42 <1.0
Sample 10 0 0.15 1.04 1.20 0 77.8 76.1 1.6 6.80 131.2 0.20 18.6 2.69 <1.0
Sample 11 0.21 0.45 0.89 1.68 0.06 73.9 75.7 0.6 7.05 246.9 0.95 21.5 4.17 <1.0
Sample 12 0 0.44 0.81 1.44 0.25 645 763 44 7.54 395.2 0.29 12.1 3.32 <1.0
Sample 13* 6.11 0.54 0.71 8.36 0 64.8 89.4 0.5 7.98 835.0 5.47 189.7 5.50 >2419.6
Sample 14 0 0.43 0.63 0.77 0 429 79.9 6.1 6.82 124.0 0.28 28.5 6.82 <1.0
Note: *The values provided here are the average of two independent measurements of each
sample.
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Table 2. Lab and field measurements on 07/06/2023.

Parameters

Name of test
reagent

Measurement
range
Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6
Sample 7
Sample 8
Sample 9
Sample 10
Sample 11
Sample 12
Sample 13
Sample 14

Note:

Measurements from Dr. Thinesh's lab*

Ammonia
Nitrogen (NH3—N)

<0.46mg/L

TNT 832

2.0-47.0

1.28
0.00
0.08
0.62
0.52
0.03
0.00
0.00
0.10
0.12
0.40

0.06

Nitrite

Nitrogen (NO,- Nitrate Nitrogen Phosphate

N)

<1.1mg/L

TNT 841

2.0-90.0

0.52
0.43
0.41
0.6
0.42
0.35
0.36
0.33
0.39
0.45
0.44

0.49

(NO,-N)
<1.1mg/L

TNT 835

0.23-13.50

0.00
0.37
0.33
0.65
0.29
0.28
0.38
0.30
0.19
0.31
0.59

0.18

(PO,”)

<0.66mg/L < 10mg/L

TNT 826

1.0-16.0

3.48
1.51
1.10
2.62
1.66
0.78
0.90
0.86
0.46
1.12
1.51

0.54

Total

Nitrogen

(N)

PhosVer

Rea.

0.0-2.5

0.14
0.07
0.10
3.54
0.43
0.17
0.34
0.16
1.33
0.18
0.37

0.10

Field sensor readings * CAWAQ
Turbidity E. coli
cop  Temp DO pH Conductivity Ammonia <75 Nitrate <126
(mg/L) <95°F >3 mg/L 6.0~8.5 <2500 pS/cm mg/L NTU mg/L  MPN/100ml
TNT 821
3.0-
150.0
643 823 0.6 10.30 623.0 8.73 242.6 1.54 4.1
00 809 28 745 209.5 0.72 729 1.23 1413.6
00 797 11 721 155.2 0.14 8.0 0.60 129.6
0.0 79.4 0.4 7.10 182.5 0.64 40.4 1.27 >2419.6
0.0 83.3 0.2 7.96 179.4 1.11 12.4 0.33 >2419.6
0.0 82.6 0.3 7.63 204.9 0.21 6.8 0.70 5.2
00 836 10 747 2973 021 215 1.03 682
113 849 02 7132 207.1 1.86 73 2.47 365.4
00 81 21 177 756.0 0.61 16.0 1.13 48
1.2 82.8 3.0 7.38 1173.5 0.87 466.0 2.22 10.9
2.8 82.0 0.9 7.35 348.8 4.54 11.6 1.21 >2419.6
04 888 48 741 173.3 1.23 24.1 1.39 10.8

* The values provided here are the average of two independent measurements of each

sample.
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Table 3. Lab and field measurements on 12/06/2023.

Parameters

Name of test
reagent

Measurement
range
Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6
Sample 7
Sample 8
Sample 9
Sample 10
Sample 11
Sample 12
Sample 13
Sample 14

Note:

Measurements from Dr. Thinesh's lab*

Ammonia

Nitrogen (NH3—N)

<0.46mg/L

TNT 832

2.0-47.0

0.08
0.14

0.03
0.49
0.42
0.71
0.12
0.16

0.11

Nitrite Total
Ni _ Nitrate Nitrogen Phosphate .
itrogen (NO, ! > Nitrogen
N) (NO,-N) (PO,") (N) cop  Temp DO pH Conductivity
<1.1mg/L <1.1mg/L <0.66mg/L <10mg/L (mg/L) <95°F >3 mg/L 6.078.5 <2500 uS/cm
PhosVer
TNT 841 TNT 835 TNT 826 Rea. TNT 821
3.0-
2.0-90.0 0.23-13.50 1.0-16.0  0.0-2.5 150.0
0.63 0.50 2.02 0.39 522 67.1 24 7.69 542.5
0.52 0.32 1.93 0.13 35.8 64.1 1.1 6.14 4440.5
0.48 0.31 1.65 0.13 43.9 67.1 0.6 6.75 14361.0
0.22 0.21 1.00 0.07 17.2 64.3 1.3 7.24 347.7
0.60 0.34 2.01 0.28 30.4 66.7 IFS 7.06 13983.5
0.60 0.31 1.74 0.26 62.4 65.7 1.1 6.81 26930.0
0.57 0.21 0.67 0.99 13.7 65.0 0.9 7.34 1208.5
0.59 0.45 1.22 0.58 29.8 63.7 0.9 7.34 452.5
0.62 0.31 0.55 0.19 17.8 67.0 54 7.36 5211.5

* The values provided here are the average of two independent measurements of each

sample.
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Field sensor readings *

Ammonia

mg/L

0.34
7.35

9.79
0.28
8.96
19.37
0.26

0.35

2.98

Turbidity

<75
NTU

6.2
6.3

14.0
12.6
20.7
8.0
26.3

14.6

17.8

Nitrate
mg/L

1.53
2.76

3.11
1.13
2.45
3.64
0.81

0.84

1.50

CAWAQ

E. coli
<126
MPN/100m|

126.7
14.2

56
30.9
1732.9
1119.9
1413.6

23.1

27.2



Table 4. Lab and field measurements on 01/30/2024.

Parameters

Name of test
reagent

Measurement
range
Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6
Sample 7
Sample 8
Sample 9
Sample 10
Sample 11
Sample 12
Sample 13
Sample 14

Note:

Measurements from Dr. Thinesh's lab*

Ammonia
Nitrogen (NH3—N)
<0.46mg/L

TNT 832

2.0-47.0
0.00

0.00
0.00
0.03
0.00
0.01
0.00
0.00
0.00
0.00
0.56
0.00
0.00

0.00

* The values provided here are the average of two independent measurements of each

sample.

Nitrite

Nitrogen (NO,- Nitrate Nitrogen Phosphate

N)
<1.1mg/L

TNT 841

2.0-90.0
0.74

0.76
0.23
0.40
0.75
0.46
0.76
0.92
0.90
1.02
1.06
0.49
0.97

0.47

(NO,-N)
<1.1mg/L

TNT 835

0.23-13.50
0.64

0.59
0.53
0.63
0.59
0.43
0.69
0.61
0.62
0.58
0.62
0.53
0.69

0.72

(PO,”)

<0.66mg/L < 10mg/L

TNT 826

1.0-16.0

0.97
1.02
0.56
1.43
1.07
1.44
1.23
1.28
1.22
1.43
2.34
1.65
2.68

0.81

Total
Nitrogen

(N)

PhosVer
Rea.

0.0-2.5
0.38

0.36
0.10
1.10
0.51
0.23
0.40
0.45
0.38
0.51
0.72
0.62
222

0.27

coDb
(mg/L)

TNT 821

3.0-
150.0

66.7

65.9
214
36.4
479
33.0
50.6
69.5
72.7
712
52.8
46.3
81.1

32.05
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Temp

52.7

532
51.8
542
54.5
53.6
53.0
53.6
52.3
532
532
55.5
52.9
56.7

DO

6.2

6.7
5.5
2.1
3.7
4.8
7.8
54
6.9
6.8
3.1
7.8
4.4
8.7

Field sensor readings *

pH

5.08

5.15
6.48
6.38
6.17
6.24
6.33
5.59
5.54
5.64
6.93
7.34
7.65
5.79

Conductivity Ammonia
<95°F >3 mg/L 6.078.5 <2500 uS/cm

10.2

10.8
5.9
24.7
23.0
532
30.5
48.3
18.5
18.2
293
7.7
47.5
354

mg/L

0.36

0.38
0.57
1.43
0.88
0.50
0.79
0.71
0.52
0.9
4.48
1.34
1.07
0.57

Turbidity
<75
NTU

62.5

60.3
195.1
442.6
401.6

96.5
121.6
112.0

73.8

714
379.0
948.0
333.5

91.8

Nitrate
mg/L

3.29

5.72
1.94
1.79
2.78
9.75
6.81
4.87
6.22
7.39
5.85
1.81
5.21
5.86

CAWAQ

E. coli
<126
MPN/100m|

53.8

61.3
96.0
178.9
488.4
259
816.4
529
67.0
33.1
228.2
77.1
770.1
156.5



Table 5. Lab and field measurements on 03/22/2024.

Parameters

Name of test
reagent

Measurement
range
Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6
Sample 7
Sample 8
Sample 9
Sample 10
Sample 11
Sample 12
Sample 13
Sample 14

Note:

Measurements from Dr. Thinesh's lab*

Ammonia
Nitrogen (NH3—N)
<0.46mg/L

TNT 832

2.0-47.0
0.08

0.16
0.32
0.27
0.16
0.06
0.25
0.18
0.32
0.16
0.21
0.25
0.53

0.07

* The values provided here are the average of two independent measurements of each

sample.

Nitrite

Nitrogen (NO,- Nitrate Nitrogen Phosphate

N)
<1.1mg/L

TNT 841

2.0-90.0
0.38

0.25
0.32
0.62
0.55
0.21
0.81
0.82
0.64
0.34
0.42
0.39
0.45

0.40

(NO,-N)
<1.1mg/L

TNT 835

0.23-13.50
0.74

0.74
0.49
0.81
0.75
0.39
0.88
1.02
0.89
1.10
0.85
0.97
1.08

0.24

(PO,”)

<0.66mg/L < 10mg/L

TNT 826

1.0-16.0

1.04
1.25
0.90
1.90
1.22
0.90
1.92
1.97
1.82
1.86
1.80
2.38
2.72

1.26

Total
Nitrogen

(N)

PhosVer
Rea.

0.0-2.5

0.28
0.36
0.48
2.20
0.89
0.46
1.10
0.90
0.45
0.87
0.72
0.85
1.40

0.10

coDb
(mg/L)

TNT 821

3.0-
150.0

55.5

54.7
323
435
40.7
30.3
58.5
513
53.2
52.6
53.1
62.6
68.6

21.6
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Temp

593

59.3
59.3
59.0
60.0
59.7
59.9
59.3
59.1
59.1
59.5
59.7
61.4
62.8

DO

5.9

6.4
5.5
4.6
7.3
6.3
6.7
6.9
7.4
6.0
5.8
5.1
6.4
8.4

Field sensor readings *

pH

5.99

5.37
6.24
6.15
5.91
5.77
5.75
5.68
6.34
6.77
6.53
6.78
7.03
6.37

Conductivity Ammonia
<95°F >3 mg/L 6.078.5 <2500 uS/cm

72.4

52.7
189.6
117.5
98.4
90.8
99.9
89.0
70.1
128.9
122.2
118.1
143.1
140.1

mg/L

0.36

0.50
0.46
1.06
0.58
0.63
0.97
0.85
0.59
0.65
1.04
1.36
1.19
1.60

Turbidity
<75
NTU

29.9

333
25.7
56.6
43.0
553
75.4
65.4
59.7
38.8
313
40.5
20.7
17.4

Nitrate
mg/L

1.07

1.79
0.41
0.91
1.31
1.00
2.30
2.29
2.58
2.89
1.96
2.30
2.62
2.48

CAWAQ

E. coli
<126
MPN/100m|

2419.6

>2419.6
>2419.6
>2419.6
>2419.6
>2419.6
>2419.6
>2419.6
>2419.6
>2419.6
>2419.6
>2419.6
>2419.6
129.1



As shown in Table 1, Table 2, Table 3, Table 4, &Table 5, the measurements over
the criteria are highlight in red. The elevated Phosphate (PO43_) and E. coli were found in

water samples collected in December, January, and March 2023. Due to extreme drought
and heat during August to November 2023, the abnormal conductivities were found in
December 2023. The lower DO occurs when the flow rate is small.

Water samples with both high and low E. coli were selected to perform Human
qPCR marker analysis, results of the analysis are shown in Table 6. Sites 5, 7 and 13
showed higher human qPCR marker (levels > 525 copies/100 ml), which indicated the
potential contribution of human fecal contaminants from the OSSFs operating in those
areas. Further analysis at site 7 showed that qPCR remained at higher level although F.
Coli at site 7 on 05/19 and 07/06 were below the level of concern (levels <126 MPN/100
mL). Therefore, we identified that the site 7 is a potential hotspot with failing OSSFs and
should be considered for fixing the existing OSSFs as a BMP approach.

Table 6. qPCR analysis at different sites.

Date Site Copies/ 100 ml filter E. Coli MPN/100 mL

7/6/2023 Sample 2 380 1413.6
11/20/2023 Sample 2 615 126.7
3/22/2024 Sample 2 2152 >2419.6
7/6/2023 Sample 4 902 >2419.6
1/30/2024 Sample 4 532 178.9
3/22/2024 Sample 4 1346 >2419.6
7/6/2023 Sample 5 4881 >2419.6
1/30/2024 Sample 5 2514 56
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3/22/2024 Sample 5 78560 >2419.6

5/19/2023 Sample 7 18730 <1.0
7/6/2023 Sample 7 951 68.2
11/20/2023 Sample 7 105723 1732.9
1/30/2024 Sample 7 1825 816.4
3/22/2024 Sample 7 13511 >2419.6
7/6/2023 Sample 8 880 365.4
11/20/2023 Sample 8 687 1119.9
3/22/2024 Sample 8 2477 >2419.6
5/19/2023 Sample 13 15778 >2419.6
1/30/2024 Sample 13 1233 770.1
3/22/2024 Sample 13 17800 >2419.6

2 Results of Machine Learning (ML) Models

Models and algorithms used in this study were implemented in Python 3.7

programming language. The LSTM model was built with Pytorch 2.1 (https://pytorch.org/)

while IG and GSHAP algorithms were implemented using Captum (https://captum.ai).

Three metrics, namely coefficient of determination (R?), root mean square error
(RMSE) and mean absolute error (MAE), defined by equations Error! Reference source
not found., Error! Reference source not found. and Error! Reference source not found.
were applied to quantitatively evaluate the performance of the proposed models. R? is much
informative in regression analysis evaluation (Chicco et al., 2021). The value of R? of a
best model can achieve 1, representing the predicted values exactly match the true values.

The negative R? appears when the models have worse predictions than the baseline model
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which always predicts the mean of the targets. RMSE is sensitive to outliers while MAE
describes only the average magnitude of the errors with a linear rule, ignoring their
direction (Willmott and Matsuura, 2006). According to their characteristics, the

performance of the applied models can be sufficiently assessed by combining these metrics.

2?:1(3’1’ - xi)z
2 _q_ &=t T
SRR A A (1)
n L 2
RusE = [P X0 - i ®)
Z?: lyi — xil
MAE = + (3)

where, x; is the predicted value at the i-th time step, y; is the corresponding observation,
¥; is mean of the observed values and n is number of time steps.
2.1 Results of ML DO Models

2.1.1. Current Hourly DO Prediction

As shown in Table 7, the performance of the LSTM and TL-LSTM models was
superior to the MLR models for both datasets. Figure 12 demonstrates the comparison of
7 features models at both locations. The best performance (Figure 12 (b)) was achieved by
the LSTM model with 7 features of the PIB dataset, and have the R?, RMSE and MAE
were 0.982, 0.263 and 0.149, respectively. Although the R? values of the MLR models at
PIB were acceptable (R?= 0.795), the predictions in Figure 12 (a) were not agree well by
simply repeating the previous DO observations. For the SWB dataset, the R? values of the

TL-LSTM models were 0.043 and 0.128 higher than those of the LSTM models, and 0.678

26



and 0.617 higher than those of the MLR models with 2 or 7 input features, respectively.
This indicated that the LSTM model learned about the spatial-temporal dynamics of DO

and can predict hourly DO with TL-LSTM in the Neches River.

{a)MLR model with 7 features at PIB
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Figure 12. Comparison of models for current hourly DO predictions.

Table 7. Performance of the DO models for 1-hour prediction task.

Dataset Model Features R? RMSE (ml/L) MAE (ml/L)
MLR 2 0.795 0.883 0.603
PIB 7 0.795 0.884 0.607
LSTM 2 0.981 0.267 0.154
7 0.982 0.263 0.149
MLR 2 0.149 0.609 0.462
7 0.176 0.600 0.455
2 0.774 0314 0.234
SWB LSTM 7 0.665 0.382 0.287
2 0.817 0.283 0.222
TL-LSTM 7 0.793 0.301 0.235

2.1.2. 14-day Hourly DO Forecast

The visual comparisons of rolling forecasts with both the PIB and SWB datasets
were shown in Figure 13. The outcomes summarized in Table 8 revealed that the LSTM
and TL-LSTM models outperformed the MLR models with higher accuracy for the 14-day
prediction task. The best models for the PIB and SWB were the LSTM model (R?>=0.891)
and the TL-LSTM model (R?>=0.502), respectively. In particular, the R? values of the TL-
LSTM models with 2 and 7 features at SWB increased by 42.5% and 23.3% compared to
those of the LSTM models. These results indicated that the general knowledge of DO
dynamics learned from the PIB dataset were useful for building DO models for the SWB
dataset. In addition, the forecasts generated by the LSTM and TL-LSTM models with 2
input features were capable to follow the general trend of DO observations (Figure 13 (a)).

Compared to 2 features, the LSTM and TL-LSTM models employing 7 features obtained
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slightly higher R? and smaller RMSE and MAE. Moreover, more sharp changes in DO

peaks and troughs were captured, particularly during the period from 03/03/2022 to

03/15/2022 at the PIB (Figure 13 (b)). Furthermore, the LSTM and TL-LSTM models

maintain a satisfactory performance during the 14-day forecast applying the predicted DO

as input. It demonstrates models could understand the potential relationship between DO

changes and input features. On the contrary, the forecasts generated by the MLR models

only oscillated around the mean of the initial 24-hour DO inputs, and its shape resembled

that of the initial inputs (Figure 13 (c)). The deficient performance of the MLR model

demonstrated the limitation of the MLR models on the longer period prediction.

Table 8. Performance of the DO models for 14-day hourly forecast.

Dataset Model Features R’ RMSE (ml/L) MAE (ml/L)
2 2 1.51 1.1
MLR 7 822: 1 45158 1 1??
PiB 2 0.802 0'769 0'592
LSIM 7 0.891 0.572 0.327
2 -0.217 0.670 0.513
MLR 7 -0.109 0.639 0.487
2 0.334 0.496 0.387
SWB LSIM 7 0.407 0.468 0.363
2 0.476 0.440 0.346
TL-LSTM
S 7 0.502 0.428 0.337

29



(a)MLR model with 7 featurcs at PIB

—— Preprocessed values  —— 4st 14 day forecast st L4-day forecast  —— 10t 14-day forecast

(d)MLR modecl with 7 fcatures at SWB
R?=—0.109, RMSE =0.639, MAE =0.487

14 1st 14-day farecast —— S5sLl4-dayforecast —— Bstl4-day forecast  —— 11st14-day forecast
= 2nd 14-day farecast G5t 14-day forecast Ost 14-day forecast 125t 14-day forecast
12 3rd 12-day forecast 56 A{
= =
310 o N
g e e B Dl M
Z e . g i W v VU |
[a} e
6 ] 4
o 2 . 4
a W R®=0.288, RMSE — 1.459, MAE —1.111 34— prep d val 16t 10.Gay forecast  —— 2nd 1a-day farecast  —— #rd 14-day farecast
2
202270101 2022-01-15 20220201 20220215 20220301 20220315 2022°08-01 2023-08-05  2023-08-00  2023-08-13 20230817 2023-0821 2023-08-25  2023-08-292023-09-01
1 (b)LSTM model with 2 features at PIB (c)LSTM model with 7 (caturcs at SWB
—— Preprocessed values  —— dst 14-day for 7(147dyfom( st —— 10st 14-day foracast 74 R?=0.407, RMSE = 0.468, MAE —0.363
14 Jtldly cast  —— Ssbldeday forecast  —— Bst 1d-day forecast —nnaun ast
—— 2nd 14-da) e Bst 14-da yfv Ost 14-day) yfﬁ)re(ESt 12st 14-day forecast
- 12 3rd 1a-day Pl 8
a =
S o
g 10 W TR £s A ﬁd'LI Wﬂw‘)\fﬂ h
P 9 Ny W
[=}
6 {\/‘ \L 4
My
4 i =10.802, RMSE =10.769, MAE =0.592 39 — preprocessed values 1st 14-day forecast —— 2nd 14-day forecast —— 3rd 14-day farecast
2
20220101 20220015 20220201 20220215 20220301 20220515 2022.04-01 2023-08-05 2023-08-09 2023-08-13 20230817 2023-0821 2023-08-25  2023-08-292023-09-01
, {c) LSTM model with 7 features at PIB (f)TL — LSTM model with 7 features at SWB
—— Preprocessed values  —— dst 14.day forecast Jst Le-day forecast  —— 10st 14-day forecast 71 R2=0.502, RMSE — 0.428, MAE —0.337
14 15l 14-day farecast —— 55l 14-day farecast —— Bsl ld-day forecast  —— 115l 14-day farecast
—— 2nd 14-day farecast G5t 14-day forecast 9st 14-day forecast 12st 14-day forecast
12 3rd 14-day forecast 6 ﬁ
= = |
30 2
£ £s ! } Ww h
g " AT 5, |1
6 \\_ 4
h
2
'\‘\«,,‘:v R?=10.891, RMSE =0.572, MAE =0.327 E 18t 10-day forecast  —— 2nd La-day farecast = rd La-day farecast
2
2022-01-01 2022-01-15 2022-02-01 2022-02-15 2022-03-01 2022-03-15 2022-04-01

2023-08-05  2023-08-03  2023-08-13  2023-08-17  2023-08-21  2023-08-25  2023-08-292023-09-01

Figure 13. Comparison of models for 14-day hourly DO forecasts.

2.2 Results of ML Turbidity Model

Table 9 shows the performance of the Attention-based Encoder & Decoder model

for the three split datasets. The three errors were calculated with predicted values of the

next time-step (1 hour) and the next 120 time-steps (5 days), respectively. The test set

obtained the best MAE, MAPE, and RMSE equal to 0.887, 3.74%, and 1.175 for the next

time-step, while 2.133, 8.837%, and 7.853 for total 5-day predicted values, respectively.

Considering the shortest length of the test set, the model performance was also evaluated

on the training and validation sets and the results still showed acceptable error levels. The

predictions of the next step for the test set are visualized in Figure 14Error! Reference

source not found.. The predictions were close to the historical values and captured the

fluctuation caused by tides. In order to show our proposed methods more intuitively and
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clearly, some of 5-day predicted results for the three datasets are plotted in Figure 15.
Although the predicted sequential values did not manage the sharp changes in hourly data,
they captured the general trend of turbidity that could give more suggestions than the next
time-step prediction for the public.

Table 9. A comparison of the errors of the training set, the valid set, and the test set.

Calculated Metrics
Dataset o
prediction length MAE (NTU) MAPE (%) RMSE (NTU)
Training Next time-step 1.707 5.064 7.357
set All 120 time-steps 2.363 7.146 22.733
. Next time-step 1.782 6.929 6.181
Valid set
All 120 time-steps 3.055 11.410 15.293
Next time-step 0.887 3.740 1.175
Test set
All 120 time-steps 2.133 8.837 7.853

According to earlier research, most studies focus on the one-time-step turbidity
prediction with machine learning models. Wang et al. (Wang et al., 2021) used tidal average
significant wave height and tidal range to predict hourly turbidity by Artificial Neural
Network (ANN), Support Vector Machine (SVM), and Genetic Programming (GP) at a
coastal bay. The best RMSE is equal to 10.83 obtained by the ANN model. Zhang et al.
(Zhang et al., 2021) used wind field, air temperature, and rainfall data to predict hourly
turbidity in a lake by the Random Forest (RF) model, achieving 39.69% MAPE. Rele et al
(Rele et al., 2023) built an Autoregressive integrated moving average (ARIMA), Long

Short-Term Memory (LSTM), and Generalized additive model (GAM) to predict daily
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turbidity in a river according to the previous 30-day turbidity, rainfall, water level,
temperature, and total global solar exposure data. The MAE and RMSE of the three models
ranged from 5.91 to 11.5 and 9.46 to 17.27, respectively. Then they proposed a meta-model,
integrated ARIMA, LSTM, and GAM, which can auto select the optimal model at each
time step and improve the performance to 1.67 MAE and 2.31 RMSE. Compared with their
results, the errors of the next time-step in this study were relatively small. The errors of all
time-steps were much higher than those of the one-time-step prediction, but they were still

compatible and useful to provide a 5-day trend of turbidity changes for practical application.
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Figure 14. Visualization of the next time-step (1 hour) prediction of the test set.
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3 Results of SWMM & MOPUS model
The watersheds modeled by SWMM were delineated from 1-m Digital Elevation
Model (DEM) using tools in the HEC-HMS modeling suite. The drainages thus derived

then underwent manual adjustments using Google Earth Pro. (Figure 16)

Figure 16. Watershed delineated using HEC-HMS (left) and after manual editing (right).

The final watershed boundaries and flow network were integrated into EPA-SWMM to
create schematics of drainage (see an example in Figure 17). The area and width of the sub-
catchments were determined from Google Earth Pro. For simplicity, each watershed was
assumed to comprise 10% impervious land and 5% zero impervious land. Default values
were used for the rest of the parameters. The schematization of subcatchments at each site

can be found in Appendix A.
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Figure 17. Schematization of watersheds in EPA-SWMM for sites 12-14.

The models were run to produce runoff simulations for over 1 year (1 January 2023
— 31 March 2024). The baseline simulations were done using rainfall data collected from
CoCoHaRS website (Community Collaborative Rain, Hail and Snow Network, Figure 18
), and the models underwent light calibration by adjusting Manning’s n. In the scenario
analysis, design rainfall was generated for return periods 25-year, 50-year and 100-year
following Kiprich’s method. The model is simulated for these design storms and

corresponding runoffs are generated.
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Figure 18. Example time series of rainfall from the CocoHaRS station and runoff simulations by

EPA-SWMM.
MOPUS model is based on two conceptual equations shown in Figure 19. These

equations incorporate two empirical coefficients. In this study, these coefficients were
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adjusted to allow the maximum bacteria concentration from model simulations to match

the observations collected by Lamar University (Figure 19, lower right panel).

4.47 i 2
VPCoeff RHCoeff
Py (t) = 107 Coell [VP(L" 1)] x {RH(L‘ 1)} Tested Value MOPUS Model Value
VP RH 1 8.5 8.45556104
%S;  (orgs) 2 129.6 129.669827
3 11.2 14.82049174
] 9] 96.5993664|
1.25
" C; Coeff 140
Pu(t) x 4] S
Calt)y= — L 51 (rg/100 mL) e fom flelTest
6 % 10°Q; (1) 10

Value from MOPUS Model

8

Bacteria Conc. (MPH/100mL)

Figure 19. MOPUS Model with calibrated coefficients based on observed bacterial concentrations.

The impacts of BMPs on simulated peak bacterial concentrations are summarized
in Table 10, where aggregate peak bacterial simulations by the coupled modeling system
without and with BMPs are compared for each of the 14 sites. The percentage reduction in

runoff ranges from 0% at site 14 to 26% at site 6.

Table 10. Reduction in runoff peaks after BMP implementation for 2023-2024, with default BMP

configuration.
Sites # Runoff-Baseline Runoff — BMP Reduction
[cfs] [cfs] [%]
1 3.60 3.40 5.56
2 2.17 2.00 7.83
3 0.81 0.80 1.23
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4 10.71 10.30 3.83
5 2.22 2.10 541
6 1.50 1.40 6.67
7 12.94 12.40 4.17
8 1.51 1.40 7.28
9 19.01 18.20 4.26
10 4.44 4.20 5.41

The impacts of BMPs on simulated peak bacterial concentrations are summarized in Table
11, where aggregate peak bacterial simulations by the coupled modeling system without
and with BMPs are compared for each of the 14 sites. The percentage reduction in runoff
ranges from 0% at site 14 to 26% at site 6.

Table 11. Reduction in bacteria concentrations after BMP implementation for 2023-2024, with

default BMP configuration.

Max Bacteria Conc.-

Site # Baseline Max Bacteria Conc.-BMP ~ Maximum % Reduction
1 27 25 6
2 309 294 5
3 367 365 1
4 400 366 8
5 302 295 2
6 61 45 26
7 926 903 3
8 2381 2271 5
9 1542 1255 19
10 67 63 6
11 356 339 5
12 139 133
13 19667 15885 19
14 99 98 0
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In order to assess the dependence of efficacy of BMPs on their size and infiltration

properties, three hypothetical BMP configurations were created with different Berm height

and soil permeability (Table 12).

Table 12. Three BMP configuration used in sensitivity analysis.

BMP 1 | BMP2 | BMP 3
Berm height 100 100 1000
Biofiltration Media Thickness 650 650 650
N Porosity 0.5 0.5 0.6
Soil Mix Property Field capacity 0.2 0.4 0.4
Underdrain/ gravel base height 650 650 650

The outcomes from the sensitivity analysis are shown in Table 13. Increasing capacity of

the BMP results in increased percentage reduction in runoff, and smaller changes in the

reduction in bacteria loading.

Table 13. Percentage reduction in runoff and bacteria concentration with each hypothetical BMP

configuration.
BMP-1 BMP-2 BMP-3
% reduction % reduction % reduction
Runoff Bacteria Conc Runoff Bacteria Conc Runoff Bacteria Conc

24 26 25 26 24 26
1 26 1 26 1 26
74 29 45 14 74 29
54 20 48 16 54 20

0 0 0 0 0 0
44 10 11 2 11 2
42 7 26 7 34 7
48 49 48 28 48 49
35 12 18 6 24 8
0 17 0 17 0 17

11 3 6 2 11 3
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17 5 17 5 17 5
39 28 39 27 39 28
10 3 10 3 10 3
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Chapter 1V

Summary

Five runs of water sampling and water quality measurements have been conducted
to assess the bacteria pollution in the drainage system after the main rain events. The results
demonstrate the elevated nutrient and E.coli were observed in the system. The bacteria
source tracking showed that the Human qPCR marker at sites 5, 7, 13 were higher than the
criteria, which indicated the potential contribution of human fecal contaminants from the
OSSFs. To understand how the bacteria from OSSF wastewater affect the water quality in
Neches River, the outfalls from sample sites were identified. Along the Neches River, site
14 outfall is upstream of TCEQ 20774; sample sites 1&2 outfalls are upstream at TCEQ
10575, sample sites 3,4,5&6 outfalls are upstream of TCEQ 10570, and site 7 outfall is
upstream of TCEQ 10566. The samples sites 8&9&10 discharges to the Bessie Heights Oil
and Gas Field before it reaches the TCEQ 10563. The sample sites 11&12&13 discharge
to the Old River Cove before it reaches the Sabine Lake. The elevated enterococci at all
monitoring sites in January 2023, and at TCEQ 10575 in year 2023, at TCEQ 10575 in
January and October. The water quality in Neches River response to the nonpoint source
we found in the drainage system accordingly. Therefore, the failing OSSFs is one of the

bacteria pollution origins.
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Analyzing the YSI water quality data collected at the SWB with innovative machine
learning technologies, we developed the LSTM models with and without transfer learning
method to predict hourly DO for current and consistent 14-day in rivers to support water
quality management. The contributions of this study were concluded as following: (1) This
was the first study to investigate the ability of the LSTM model to predict hourly DO
concentrations up to 14 days under different hydro-meteorological conditions, The LSTM
model performed much better than the traditional MLR model, where its R? achieved up to
0.98 and 0.89 for current and 14-day hourly DO forecasts, respectively; (2) The efficacy of
transfer learning algorithm was proved in solving the problem of insufficient data volume
for the LSTM model. The relationship between DO and input features obtained by the large
dataset can enhance the performance of the TL-LSTM model with the small target dataset
although the improvement had limits due to different environmental conditions at two
locations; (3) Previous DO was identified as the most important feature at both locations
and water temperature was also critical for forecasting the general trend of DO changes
within 14 days. The Attention-based Encoder & Decoder model associated with the GRU
was applied to predict hourly turbidity in the following 5 days with hydro-meteorology
measurements. Compared with earlier research, the MAE, MAPE, and RMSE of the next
time-step predictions are acceptable. This model also can provide the general trend of
turbidity changes within 5 days. The capability of forecasting 5-day hourly turbidity can
be applied to local water management systems with 5-day gage height and rainfall

forecasting data from NOAA.
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A coupled EPA-SWMM/MOPUS system was established to help assess the
potential of infiltration BMPs, specifically bioretention cells, in alleviating the bacteria
loading problems if installed in the upstream of watersheds with high concentration of
OSSFs. The EPA-SWMM model was implemented for 14 sites in different tributaries of
the Neches River. For each site, the model was used to simulate runoff using observed
rainfall over a 1-year window, and the resulting runoff time series was ingested into the
MOPUS system to create time series of bacteria loading. Using a default configuration of
bioretention cell leads to 1-88% reductions in peak simulated runoff, and 0-26% reductions
in peak bacteria loading. Sensitivity experiments suggest that increasing capacity of the
BMP leads to larger reductions in peak runoff but relatively modest reductions in bacteria

loading.
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APPENDIX 1: Schematics of watersheds in EPA-SWMM

1: Schematization of watersheds in EPA-SWMM for sites 1 and 2.

Figure A-
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Figure A-2: Schematization of watersheds in EPA-SWMM for site 3.

Figure A-3: Schematization of watersheds in EPA-SWMM for site 4.
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Figure A-4: Schematization of watersheds in EPA-SWMM for site 5.
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Figure A-5: Schematization of watersheds in EPA-SWMM for site 6.
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Figure A-7: Schematization of watersheds in EPA-SWMM for site 8.
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Figure A-10: Schematization of watersheds in EPA-SWMM for site 11.
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Figure A-11: Schematization of watersheds in EPA-SWMM for sites 12 and 13.
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Figure A-12: Schematization of watersheds in EPA-SWMM for site 14.
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APPENDIX B: Pictures for outreach and education activities

Fig. B_2: The student collected the water sample in the drainage ditch.
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(Randy Chelette) demonstrated to students how to collect samples
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from the creek.
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Fig. B_4: Presentation at ASCE EWRI 2024 conference at, Milwaukee, Wisconsin in May 2024
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Fig B_4: Presented our field measurement to high school summer camp students in June 2024.
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Fig B_5: high school summer camp students listened to our presentation in June 2024
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