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1. Project Overview 

 
Numerous small islands in the Upper Laguna Madre are used as rookeries by a diversity of colonial 

waterbird species including skimmers, terns, egrets, and pelicans. Colonial waterbird populations are key 

environmental indicators of an estuary system’s health. Communities along the Texas coast enjoy 

economic benefits from birding ecotourism, especially colonial waterbirds. However, recent studies show 

a dramatic decline in certain colonial waterbird populations in the region. 

 

The majority of rookeries in the Upper Laguna Madre are spoil islands created from dredged material. 

Due to their low elevation and small extent, these islands are vulnerable to wave-driven erosion, storm 

impact, and relative sea level rise. This vulnerability is expected to amplify with a projected growth in sea 

level rise. Resource managers concerned with impacts of habitat loss on colonial waterbird populations 

stress the need for detailed information about rookery island topography. Presently, only very sparse 

elevation data exists. Without baseline topographic data, resource managers are limited in their ability to 

effectively characterize nesting habitat. 

 

This project utilizes airborne light detection and ranging (lidar) measurements of island topography within 

the Upper Laguna Madre to characterize rookery vulnerability. The analysis targets the chain of islands 

near the JFK causeway and along the Intracoastal Waterway from Corpus Christi bay south to the land 

bridge below Baffin Bay (~120 sq. km). Figure 1 shows the project study area.  

 

The lidar data was collected over the study region by the University of Texas (UT) Bureau Of Economic 

Geology (BEG). The BEG provides research-grade lidar data. Research-grade refers to quality standards 

that exceed industry standards with targeted vertical accuracies of < 10 cm. This level of accuracy is 

important for mapping rookery islands where subtle changes in elevation can result in submergence of 

nesting habitat. The BEG has a new state-of-the-art topo-bathymetric lidar system called, Chiroptera. The 

system is designed for high-resolution (sub-meter), simultaneous mapping of terrain and shallow-water 

bathymetry.  

 

Success of the project is measured by the following deliverables: (1) high-resolution digital elevation 

models of island terrain; (2) GIS-layer to describe island morphometrics; and (3) inundation maps of 

island vulnerability to sea level rise. The project outputs can be applied by resource managers to monitor 

island evolution, identify vulnerable habitat or alternative habitat, derive new understanding about nesting 

and landscape interaction, and assess coastal hazards impacts.  

 

As a separate component to this project, UT BEG conducted a lower altitude bathymetric lidar survey of a 

small area (~20 square kilometers) around Shamrock Island located on the northern edge of the study 

zone in support of regional Texas General Land Office (TGLO) initiatives (see Figure 1). The purpose of 

this survey is to investigate the potential of bathymetric lidar and aerial imagery in fusion to map 

submerged structures. TGLO has an initiative to detect and remove derelict structures (e.g. abandoned 

pipelines) in the region that pose a hazard to recreation and navigation.  

 

Success of the project for this second component is measured by the following deliverables: (1) high-

resolution topo-bathymetric digital elevation models of exposed and submerged features; (2) GIS polygon 

shapefile of delineated submerged pipelines and derelict structures.  
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The purpose of this report is to provide technical details on the methods and results of the approaches 

utilized to meet the required deliverable tasks as outlined in the agreed scope of work. Details on 

deliverable production time frames and stakeholder outreach are outlined in the quarterly progress 

reports. Appendix D provides details on web-based data hosting and dissemination of project deliverables. 

 

 
Figure 1.  Map on right shows the Lidar survey area for rookery island vulnerability assessment. Zone A 
focuses on islands along the Intracoastal Waterway from the JFK Causeway south to the land bridge 
entrance (~80sq.km). Zone B focuses on islands north and south of the JFK Causeway (~40 sq.km). The 
star shows the location of the bathymetric lidar survey around Shamrock Island in Corpus Christi Bay, 
which relates to the second component of this project to map derelict structures in that area. 
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2. Background 
 

Airborne scanning light detection and ranging (lidar) is a method that pulses a laser to measure the range 

between an airborne platform and the Earth’s surface many thousands of times per second. Light travels 

approximately 30 centimeters in one nanosecond. By accurately timing the round trip travel time of the 

light pulses from the laser to a reflecting surface it is possible to determine the distance from the laser to 

the target. Because it is active, unlike aerial photography, it does not depend on ambient light which 

makes it operable during day or night.  Using a rotating mirror or other scanning mechanism inside the 

laser transmitter, the laser pulses can be made to sweep through an angle, tracing out a line or other 

pattern on the reflecting surface. With the scan line oriented perpendicular to the direction of flight, it 

produces a saw tooth pattern of ranges within a strip centered directly along the flight path (Figure 2). The 

aircraft position and orientation information is then combined with the scan angle and round-trip travel 

time for each pulse to determine the geo-referenced location of the sample points on the reflecting 

surface [1],[2]. The result is a densely sampled, three-dimensional representation (point cloud) of the 

ground and land cover. 

 

 
Figure 2. Illustration of a light aircraft collecting topographic lidar data over a beach.  An onboard 
oscillating mirror distributes infrared laser pulses generating a saw-tooth pattern.  GPS receivers onboard 
the aircraft and at a location on the ground are used to determine the instantaneous location of the 
aircraft. The orientation (roll, pitch, yaw) of the sensor head is determined from an inertial measurement 
unit. The position and orientation information along with the scanner angle and measured ranges are 
integrated to determine the x,y,z georeferenced coordinates of the illuminated surface points. 
 

Airborne lidar has revolutionized coastal monitoring making it possible to measure three-dimensional 

changes in topography at spatial resolutions needed to advance science and monitor erosion along 

coastlines efficiently and accurately [3],[4]. This revolution has been propelled by topographic lidar 

systems that operate in the near-IR portion of the electromagnetic spectrum and bathymetric systems that 

operate in the blue-green range of the spectrum [5],[6]. Small-footprint, discrete-return systems enable 

beach and upland mapping with average spatial resolutions greater than 1 point per m
2
 and achievable 

positional accuracies of 15-30 cm horizontal (x, y) and 5–10 cm vertical (z) [3],[4]. However, point density 

will vary locally depending on flight parameters, scan angle, beam divergence, surface properties, and 

pulse repetition rate among other factors [5].  
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Numerous studies have demonstrated the application of repeat lidar surveys for quantifying spatial 

patterns in landform evolution and coastal erosion (e.g. [4], [7], [8], [9], [10], [11]). Generally this is 

accomplished by differencing lidar-derived digital elevation models (DEMs) or contour vectors to estimate 

change in sediment volume or shoreline position between surveys. In addition to elevation change, many 

different morphometric parameters can be extracted for the scanned landscape, such as slope, surface 

roughness, or volume.  

 

Lidar surveys generate irregularly spaced x,y,z point cloud data representing the ground and landcover. 

The desired end-product for many scientific and engineering applications is to derive a bare-earth DEM 

from the data. Modern discrete-return lidar systems record multiple returns per transmitted pulse 

(including first and last). Typically, only the last return points are utilized for generating bare-earth DEMs 

under canopy because they have a higher probability of reflecting from the true ground surface. Prior to 

DEM generation, the point data typically undergo a computational process called filtering to try and 

remove non-ground points due to such things as buildings, vegetation and other occluding objects. Many 

different filtering algorithms have been proposed for airborne lidar data; however, no single filter or filter 

parameter setting is ideal for all data scenarios or terrain types (e.g. [12]). Once the ground points are 

obtained through filtering, a spatial interpolation method is applied to generate a regularly spaced grid of 

bare-earth elevations (Figure 3). The achievable spatial resolution of the resultant bare-earth DEMs will 

depend on the lidar system sampling density and properties of the landcover but achievable resolutions 

can easily exceed 1 meter.  In addition to bare-earth DEMs, the first return, non-filtered points are often 

used to generate digital surface models (DSMs) of the landcover elevation, such as forest canopy or 

buildings in urban areas. Furthermore, the lidar intensity values for each point can be used to derive 

texture information about the relative surface reflectance and applied to segment objects captured in the 

point cloud data. 

 

 
Figure 3. (Left) Shaded-relief image of an ALTM-derived 1-m resolution digital elevation model (DEM) of 
a section of beach along the Texas coast. (Right) Objects, such as homes and vegetation, can be 
removed through a process called filtering to generate a bare-earth DEM. 
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3. Lidar Survey (Task 1) 

 
3.1 Introduction 

 

The Bureau of Economic Geology (BEG) at the University of Texas at Austin (UT) conducted an airborne 

light detection and ranging (lidar) survey of spoil islands focused along the intracoastal waterway of the 

Upper Laguna Madre region of the lower Texas coast. The survey also mapped Shamrock Island located 

in Corpus Christi Bay on the backside of Mustang Island, Texas. The purpose of this report is to provide a 

vertical accuracy assessment of the topographic and bathymetric elevation data generated by the UT 

BEG lidar survey based on a high accuracy RTK GPS survey for ground-validation conducted at 

Shamrock Island. 

 

3.2 Survey Parameters 

 

The lidar surveys were flown in the winter of 2015. The purpose was to collect high resolution elevation 

data within the Upper Laguna Madre and Corpus Christi Bay region along the Intracoastal Waterway. The 

surveys were designed to support a maximum final post spacing of greater than 4 points per square 

meter over the exposed terrain. The elevation data were provided in NAVD88 orthometric heights 

converted using Geoid12a and georeferenced using WGS84 UTM Zone 14 meters. 

 

Survey Dates 

January 29: Upper Laguna Madre  

January 30 and February 5: Shamrock Cove 

 

All flights were conducted by the BEG at the University of Texas at Austin utilizing their topo-bathymetric 

aerial laser scanner called Chiroptera. The system was developed and manufactured by Airborne 

Hydrography AB (AHAB). The topographic LiDAR scanner operates at a wavelength of 1 um, a pulse rate 

as high as 400 kHz, and swath width of 28 to 40 degrees. It can operate to a maximum height of about 

1500 m, allowing the system to be used to rapidly scan large areas with a range accuracy of about 2 cm 

over a flat target. The bathymetric LiDAR scanner operates at a shorter wavelength (0.5 um) and a lower 

pulse rate (36 kHz). The shorter wavelength allows the laser to penetrate water of reasonable clarity. 

After the laser reflects off the bottom surface and back to the source, the transit-time delay between 

water-surface and water bottom reflections can be used to determine water depths to a flat-bottom 

accuracy of about 15 cm. Also mounted in the Chiroptera chassis is a Hasselblad DigiCAM 50 megapixel 

natural color or color infrared camera that acquires frame images at a resolution of 8,176 by 6,132 pixels 

[source UT BEG metadata].  

 

The BEG conducts their own accuracy assessment and validation of their lidar elevation products. The 

following is the method and quoted accuracy provided in the BEG metadata.  

 

Horizontal Accuracy 

Selected portions from each lidar data set were used to generate a 1m x 1m digital elevation model 

(DEM). Data estimated to have a horizontal accuracy of 0.01-0.05m from ground surveys using kinematic 

GPS techniques were superimposed on the lidar DEM and examined for any mismatch between the 

horizontal position of the ground GPS and the corresponding feature on the lidar DEM. Horizontal 

agreement between the ground kinematic GPS and the lidar was within the resolution of the 1m x 1m 

DEM. Opposing flight lines crossing the calibration target, roads within the survey area, and buildings with 
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slanted roofs are examined to remove roll, pitch, and heading errors. Several iterations of adjustments 

were made to minimize these errors caused by IMU misalignment [source BEG metadata]. 

 

Vertical Accuracy 

Ground GPS surveys were conducted near the lidar survey area to acquire ground truth information to 

refine the processing calibration file to remove elevation biases. The ground survey points are estimated 

to have a vertical accuracy of 0.05-0.10m. Roads or runways, which are typically flat areas with an 

unambiguous surface, were surveyed using kinematic GPS techniques. The lidar data set is sorted to find 

data points that fall within 1 m of a ground GPS survey point. In the project calibration file, slant range 

correction is adjusted to remove the elevation biases. The standard deviation of the final elevation 

differences provides estimates of the lidar precision. Water depth accuracy for flat bottom bathymetry is 

quoted to be 15 cm [source BEG metadata]. 

 

3.3 RTK GPS Survey 

 

Researchers at Texas A&M University-Corpus Christi with the Measurement Analytics Lab (MANTIS) and 

Conrad Blucher Institute for Surveying and Science conducted an RTK GPS survey of Shamrock Island 

to perform an independent validation of the lidar bare-earth elevation product. Understanding the 

uncertainty in the elevation product is important for modeling its propagation into any subsequent 

analyses performed with the data (e.g. erosion change detection or vulnerability assessment of sea level 

inundation). 

 

The GPS survey was conducted on January 29, 2015 using an Altus ASP-3 RTK dual-frequency GPS 

receiver, and the data were differentially corrected using the TxDOT Virtual Reference System (VRS) 

network. Reported mean accuracies of the positional data: horizontal < 2 cm, vertical < 4 cm. Spatial 

referencing was NAD83 State Plane Texas South (2011) Epoch 2010 (meters) with the elevations in 

NAVD88 using Geiod 12A.  The survey was conducted within 24 hours of the airborne lidar survey by the 

BEG ensuring no natural surface change would impact elevation differences. 

 

Cross-shore GPS transects were collected to measure elevation from the shallow water transgressing 

inland (Figure 4). This provided data from a variety of terrain types to assess their effects on the vertical 

accuracy. Over 800 independent GPS measurements were collected and used for the analysis. 

Landcover types included: Water (0 to 1.5 meter depth), Short Vegetation, Tall Vegetation, Shore (wet/dry 

line to water line at time of survey), Beach (wet/dry line to vegetation line), Marsh, Mangrove, Grass, and 

Cactus. 
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Figure 4. Aerial image from the UT BEG survey of Shamrock Island showing the RTK GPS profiles of 

bare earth elevation collected for different terrain types in the cross-shore from shallow water to 

vegetated and marsh inland surfaces. 

 

3.4 Methodology 

 

The last-return points from the lidar point cloud were filtered to remove non-ground points using a 

triangulated irregular network (TIN) densification filter based on the method in [20] implemented with 

LAStools post- processing software. The filter parameters were tuned based on visual inspection and 

comparisons of DEM shaded relief products derived from different parameter settings. Most importantly is 

the filter parameter called “step size”, which governs the size of objects (buildings, vegetation) and level 

of detail to retain in the point cloud. For this work, a step size of 4 meters was determined “optimal” based 

on the filter tuning process.  This step size allowed for the majority of above ground features to be 

removed while retaining the bare-earth surface area of the island (Figure 5). Seafloor points were based 

on the BEG classified bathymetry dataset and integrated into the model without alteration. The density of 

the classified ground points on land was 9.71 points per square meter enabling bare-earth DEM to be 

generated at a resolution of 0.25 meters. TIN natural neighbor interpolation was applied to create the 

DEM. After the DEM was generated, the GPS elevations were differenced from the lidar-derived DEM 

based on the grid cell that the point fell within [Lidar-GPS]. This was then used to compute bare-earth 

elevation differences. 
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Figure 5. Example of non-filtered (left) and filtered (right) lidar-derived DEMs for Shamrock Island. 

 

3.5 Results 

 

Table 1 shows statistics for the elevation differences computed between the lidar elevation 

measurements and GPS elevation measurements by landcover type. As observed, the largest RMSE 

between the two measurement sources occurred in the littoral zone between water and the wet/dry line. 

This is unexpected given that this area was exposed and non-vegetated; however, there are ridges and 

steeper slopes in portions of this foreshore zone. Slope amplifies lidar vertical error. Furthermore, this 

may be showing an effect of tidal inundation during the time of the lidar survey (recall the GPS was 

conducted the previous day).  The second largest RMSE occurred within the mangroves and marsh 

landcover where we expect taller and denser vegetation cover to impact lidar accuracy. Lidar showed a 

mean positive bias and lower precision (more variation) in these vegetation areas. This is expected 

behavior for lidar over dense, short vegetation because the pulse is occluded from the bare-earth surface 

and becomes convolved. This typically results in a positive vertical bias of the lidar elevation points 

relative to the true ground surface. The mangrove also showed the largest recorded elevation difference. 

Lowest RMSE occurred in short vegetation and surprisingly in areas of cactus cover. The cactus cover on 

Shamrock has many gaps. Therefore, it is likely the laser pulse penetrated through gaps and is mostly 

representing bare-earth elevation in these areas. The lowest mean error occurred within short vegetation 

and exposed beach; the main difference being the higher variation experienced on the beach. The short 

vegetation resides on more uniform, flat terrain whereas the beach is more sloped and contains ridges 

and pockets. These differences likely led to the higher variation observed over the sandy beach. 

Appendix A shows histograms of the results. 



11 
 
 

 

Table 1. Comparison of lidar and GPS elevation data by landcover type [Lidar – GPS].

Another component of this project was to examine the use of the bathymetric lidar measurements to 

detect submerged pipelines in the Shamrock Cove area of the bay. Initial inspection of the bathymetric 

lidar survey revealed a data gap due to attenuation of the laser pulse in the water column (Figure 6). After 

discussions with the BEG, this data gap was determined to be caused by increased water turbidity. The 

first leg of the survey was mapped on January 30, 2015 during ideal water conditions; however, due to 

system issues the survey could not be completed.  During the second phase of the survey conducted on 

February 5, 2015, water quality had deteriorated and turbidity increased. This region of the study area 

was primarily mapped on this later survey date in poor water conditions. The area also contains deeper 

water where the pulse will be more attenuated as it tries to propagate towards the seafloor. 

 

  
Figure 6. (left) Location of lidar penetration gap in the aerial imagery. (right)Topo-bathymetric DEM 

generated from the initial UT BEG survey product at Shamrock (all points here means topographic and 

bathymetric). Elevation in meters. 

 

To try and resolve more bathymetry in the data gap zone, UT BEG reprocessed the raw waveform returns 

over that portion of the study site using a turbid water enhancement algorithm provided by the software of 

the lidar system manufacture. This new dataset was provided to us and fused with the original dataset to 

try and derive a complete topo-bathymetric DEM for the purposes of mapping submerged structure. 

Water Vegetation Tall Vegetation Shore Marsh Mangrove Grass Contour Zero Cactus Beach 

Count 143 117 53 33 85 66 19 6 11 274 

Min (m) -0.3711 -0.2853 -0.1746 0.1548 -0.121 -0.0115 -0.1634 0.1913 -0.0686 -0.3751 

Max (m) 0.4343 0.1567 0.2364 0.3572 0.8488 0.8388 0.1263 0.3299 0.0942 0.4163 

Mean (m) 0.0706 -0.0025 0.061 0.2581 0.1423 0.1983 -0.045 0.2267 0.063 -0.0423 

Std Dev (m) 0.1156 0.0691 0.0807 0.0631 0.1228 0.1556 0.0729 0.0472 0.045 0.1252 

RMSE (m) 0.1304 0.0691 0.1006 0.2657 0.188 0.2521 0.0857 0.2316 0.0711 0.1321 
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Figure 7 and 8 show the results. As observed, the new dataset did provide returns from the data gap 

zone shown in Figure 6, but very few returns appear to reflect from the bottom. It was determined that the 

majority of these data points stemmed from the water column or near the surface. As such, the new 

dataset was not deemed useful for the purposes of pipeline detection in the data gap zone. 

 
Figure 7.  Topo-bathymetric DEM color-coded by elevation (brighter = higher elevation) at Shamrock 

Cove generated by fusing the “good” lidar data with the turbid water enhancement data over the data gap 

zone. Results show limited to no bottom detection. 
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Figure 8. Shaded relief of a topo-bathymetric DEM at Shamrock Cove generated by fusing the “good” 

lidar data with the turbid water enhancement data over the data gap zone. Results show limited to no 

bottom detection. 

 

3.6 Conclusion 

 

This chapter provided an assessment of the UT BEG topo-bathymetric lidar survey of Shamrock Cove 

conducted in the winter of 2015. Vertical accuracies measured here, both in water and on land, compared 

fairly well with the accuracy quotes reported within the BEG metadata for exposed surfaces. However, the 

vertical accuracy measured here is more degraded, on average, due to the effects of landcover and 

terrain variability, such as vegetation and surface slope. The BEG accuracy assessment reported in the 

metadata is based on more exposed and flat surfaces where optimal vertical accuracy is expected. This 

difference is considered for the purposes of this study. Overall, given the dense sampling and high fidelity 

of the data, the lidar survey is deemed to be of good quality for the main objective of this study, which is 

to define a monitoring benchmark for vulnerability assessment of rookery islands in the region. It is 

reasonable to assume that the results on accuracy computed here are generalizable to the entire Upper 

Laguna Madre topographic lidar survey dataset collected by the BEG. This is because of the same 

calibration and processing procedure employed during both surveys. 
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4. Derelict Structure Mapping in Shamrock Cove (Task 2) 

 
4.1 Introduction 

 

For this component of the project, bathymetric lidar data and airborne high resolution imagery were 

evaluated for their capability to map derelict submerged structures in the Shamrock Cove region of 

Corpus Christi Bay, TX, in support of regional TGLO clean up and mitigation efforts in the area (Ms. Amy 

Nunez and Mr. Tony Williams). Image enhancement methods including glint correction and edge 

detection were applied to improve mapping benthic structures using the aerial imagery and results 

compared with the lidar data. 

 

For the bathymetric lidar data, three spatial interpolation methods including Delaunay Triangulated 

Irregular Network (TIN), Inverse Distance Weighted averaging (IDW), and B-spline multilevel interpolation 

were examined to create bathymetric digital elevation models (DEMs) from classified point cloud data. 

The effect of interpolation on submerged pipeline delineation utilizing the DEMs was then assessed. For 

the acquired aerial imagery, three different algorithms including Sobel, Prewitt, and Canny were 

examined in edge detection image processing to illustrate the potential pipelines and their performance 

quantified. Furthermore, the impact of glint correction algorithms for enhancing the visualization of 

submerged structures in shallow water was investigated.  

 

4.2 Study Area 

 

The study area is located in the Shamrock Cove region of the Corpus Christi Bay system along the lower-

central Texas Gulf Coast (Figure 9). Corpus Christi Bay is a shallow embayment in the Texas Coastal 

Bend region with a flat bottom between 3 and 4 m deep over roughly 90% of the bay (Montagna and 

Ritter 2006; Simms et al., 2008). It is connected with the Gulf of Mexico through a narrow ship channel 

(15 m depth), which runs from east to west. Corpus Christi Bay is the nation’s seventh largest port, with 

numerous petrochemical facilities (Islam et al., 2011). The importance of the study area is because of the 

heavy oil and gas exploration activities in the area resulting derelict structures including pipelines, which 

may influence the marine environment, shipping navigation, and recreational boating.  

 

4.3 Data Set 

 

As explained in Chapter 3, the lidar data were acquired by the University of Texas Bureau of Economic 

Geology (BEG) on January 30
th
 and February 5, 2015 using their Chiropetra airborne lidar system, which 

is developed and manufactured by Airborne Hydrography AB (AHAB). The system is capable of recording 

up to 4 returns per a transmitted laser pulse and enables simultaneous topographic and bathymetric 

scanning. The topographic lidar scanner was operated at a wavelength of 1 um, a pulse rate as high as 

400 kHz while the bathymetric lidar scanner was operated at a shorter wavelength (0.5 um) and a lower 

pulse rate (36 kHz).  The shorter wavelength allows the laser to penetrate water of reasonable clarity. 

Vertical accuracy for flat bottom bathymetry is quoted to be 15 cm (BEG metadata). Refer to Chapter 3 for 

details on the accuracy assessment of the data performed for this project. The point density for the 

topographic lidar data and bathymetric lidar data were approximately 7 points per square meter and 3 

points per square meter respectively. The coordinate system utilized is WGS84 UTM- 14N  and NAVD88 

(Geoid 12) as the vertical datum. 
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Aerial images were also recorded using the DigiCAM 50 megapixel color infrared camera that acquires 

frame images at a resolution of 8,176 by 6,132 pixels. Image sets were acquired from a maximum altitude 

of 1500 m above ground level. The horizontal accuracy was +/- 5 meters to true ground at 95 percent 

confidence. The images contain three bands based on the metadata. First band is near infrared, the 

second one is red, and the third band is green (see Figure 6).  

 

 

 

Figure 9. Shamrock Cove study area (source: google & TGLO website) 

 

 

4.4 Methods 

 

4.4.1 Bathymetric Lidar 

 

Lidar Data Classification 

Classification is the process of distinguishing and assigning individual 3D points to objects or terrain 

classes, so that in subsequent processing, surface and object modelling may be based only on the points 

from relevant surfaces. The last-return points from the lidar point cloud were filtered to remove non-

ground points using a TIN densification filter implemented (see [12]) with LAStools lidar post-processing 

software. The classification is important because generating a bare earth DEM from lidar and performing 

further analysis, such as deriving the elevation information for benthic features, is possible via 

classification.  

 

Different parameter settings were examined to find a suitable combination for the given dataset. The filter 

parameters were tuned based on visual inspection and comparisons of DEM shaded relief products 

derived from the ground point set generated for different filter runs. Most importantly is the filter parameter 

called “step size”, which governs the size of objects and level of detail to retain. Filter performance was 
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examined in 3, 5, 10, and 15 meter step sizes in combination with different search cases including 

standard, fine, and hyper fine using the LASTools ground point filter algorithm (see Table 2).  

 

Table 2. Point cloud classification settings and results 

No STEP SEARCHING CASE # GROUND # NON-GROUND 

1 3m Standard 1268270 671207 

2 3m Fine 1321125 618354 

3 3m Hyper-Fine N/A N/A 

4 5m Standard 1091551 847928 

5 5m Fine 1120655 818824 

6 5m Hyper-Fine 1140119 799360 

7 10m Standard 832133 1107346 

8 10m Fine 841215 1099264 

9 10m Hyper-Fine 849923 1089556 

10 15m Standard 654516 1284963 

11 15m Fine 658215 1281264 

12 15m Hyper-Fine 669681 1269798 

 

All values in Table 2 were examined and as a result the hyper-fine case with a step size of 15 meters was 

determined “optimal” based on the filter tuning process. This step size allowed for the majority of above 

ground features to be removed while retaining the bare-earth surface area of the island. The data 

provided from UT-BEG was reclassified to better refine benthic characterization. The ground points in the 

water and land were merged and duplicate points were removed from the new data set to derive a 

complete topo-bathymetric DEM for the purposes of mapping submerged structure (Figure 10-11). 

Duplicate points might occur when two points have the same x, y coordinates and different z value or 

have the same x, y, and z coordinates in the data set. As shown in Figure 10, very few returns appear to 

reflect from the bottom in the data gap zone due to turbidity. It was determined that the majority of these 

data points stemmed from the water column or near the surface. As such, this area of data coverage was 

deemed not useful for the purposes of pipeline detection. 
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Figure 10. Topo-bathymetric lidar point cloud color-coded by elevation (blue = lower elevation and red = 
higher elevation). The color of the gap area shows the turbidity of water occluding the bottom. 

  
Figure 11. (left) Zoomed in view of the topo-bathy lidar point cloud showing oil and gas land structures. 
(right) Zoomed in view of the topo-bathymetric lidar point cloud color-coded by elevation (blue = lower 
elevation and red = higher elevation) showing Shamrock Island and the surrounding bathymetry. 

 

DEM Generation 

In this step, bathymetric DEMs from the classified lidar ground point data were created. In this study, 

three spatial interpolation methods were evaluated for DEM generation: multilevel B-spline, inverse 

distance weighted averaging (IDW), and Delaunay triangulation (TIN interpolation) [13]. Different spatial 

resolutions (cell size) were examined for each method: 0.50 m, 1 m, and 2 m respectively.  

 

LASTools was used to create DEMs with TIN interpolation. For TIN interpolation, the main control 

parameter is the max length of a triangular edge to remove, which was set at the default of 100 m. This 

length is more than sufficient for the bathymetric point density here of ~3 pts per square meter. 

 

ArcGIS was used in order to evaluate the IDW method. Several parameters are needed for this method, 

which are cell size, power, number of points, and maximum distance or search radius. The power is the 

exponent of inverse distance that controls the significance of surrounding points on the interpolated value 

for considering the weight. A lower power results in more influence from distant points. ‘Number of point’ 

indicates how many points should be used to perform interpolation. Maximum distance specifies the 

distance, in map units, by which to limit the search for the nearest input sample points. Table 3 shows the 

IDW parameters utilized. 

 

Table 3. IDW interpolation parameter settings 

No Cell size Power 

 

Search 

radius 

1 0.50 1 30 

2 0.50 2 50 

3 1 1 30 

4 1 2 50 

5 2 1 30 

6 2 2 50 

 

 

SAGA open source GIS was used to generate DEMs by multilevel B-spline method [13]. In this method 

two parameters are set: cell size and the maximum level that determines the maximum size of the final B-

spline matrix and increases exponential with each level. This parameter can be set between 1 and 14. 
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Maximum level was set to 10, 11, and 12.  Shaded reliefs were created for each DEM from the three 

interpolation methods for better visualization. A shaded relief (hillshade) is just a model for visualization 

derived from a DEM that is used to visualize the DEM by making it look 3D. The values of the shaded 

relief model no longer have any relevance to elevation and refer to shading values used by the software 

to view the surface to make it appear 3D. The parameters that should be mentioned in shaded relief are 

azimuth, altitude, and z factor. Table 4 shows the shaded relief parameters evaluated. 

 

Table 4. Shaded relief parameter settings 

 

 

 

 

 

 

Vertical Accuracy Assessment 

There are many factors that affect the DEM accuracy. In other words, accuracy of a DEM derived from 

lidar data stems from lidar point vertical/horizontal accuracy, complexity of the terrain surface, sampling 

density, classification or filtering error of the data, and finally the interpolation method used to create the 

DEM. The overall performance of the interpolator was evaluated by the Root Mean Square Error (RMSE). 

In general, RMSE is calculated by observed value and predicted value as follows: 

𝑅𝑀𝑆𝐸 = √(
1

𝑛
 ∑ (𝑦𝑖−𝑦̅𝑖))2𝑛

𝑖=1                                                                          (1) 

where 𝑦𝑖  is predicted value, 𝑦̅𝑖  is observed value and n is number of points in the sample. Here, 

observed values are RTK GPS observations and predicted values are the values of the same points 

derived from DEM. In other words, GPS observations were used to assess the vertical accuracy of the 

lidar-derived DEMs based on the different interpolation methods. The RTK GPS data collected at 

Shamrock Island (Figure 4) were used to assess interpolation error.  879 land and shallow water RTK 

measurements were collected in depths of about one meter or less, so vertical error near shore can be 

assessed. Refer to Chapter 3 for more details on the RTK GPS survey of Shamrock Island. 

 

DEM Assessment for Delineating Submerged Pipelines 

Different DEMs were created based on the three interpolation methods and by adjusting their different 

parameter settings including cell size. A TGLO shapefile capturing some of the existing pipelines in the 

area was overlaid on the DEMs to serve as ground truth and assess pipeline structure delineation. The 

relative performance of the different interpolation methods for segmentation was then measured. 

 

4.4.2 Aerial Imagery 

 

The acquired imagery was exposed to varying degrees of sun glint that can occlude visibility below the 

water surface. Therefore, two sun glint correction algorithms were applied to the images to determine 

No AZ Height Exaggeration (Z factor) 

1 315 30 1 

2 315 30 2 

3 315 45 1 

4 315 45 2 

5 315 60 1 

6 315 60 2 
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their effectiveness in improving submerged pipeline detection: Hedley et al. (2005) and Lyzenga et al. 

(2006) [14], [15]. Then, edge detection image processing was applied to the imagery in order to assess 

their ability to help automate detection of linear features including submerged pipelines. Three different 

algorithms were examined including Sobel, Prewitt, and Canny. The chosen methods were run over the 

original and glint corrected images and results compared for pipeline delineation.  

 

Sun Glint Correction 

The principle of all glint correction methods is to estimate the glint contribution to the radiance meeting 

the sensor, and then subtract it from the received signal. There are two main categories for sun glint 

removal. The first category deals with resolutions at the scale of 100-1000 m which is used for Open 

Ocean and deep water imagery. The second category is used for coastal and shallow water images with 

a pixel size less than 10 m. These methods use the near-infrared (NIR) channel on the sensor to indicate 

the amount of glint in the received signal [16]. Based on the location of the study area, which is in shallow 

water, the method used in this project fell in the second category.  

 

Hedley et al. (2005) [14] is a regression-based method that deals with NIR. Therefore, it is a suitable 

method for conducting sun glint removal on this data set. The method works as follows. The imagery 

consists of three bands, which are NIR, red, and green. Each image is split based on its components. The 

regression slope is calculated for each image to measure the relationship between the visible (green and 

red) and NIR bands. In other words, the relationship between green band and NIR is established. This 

same process also occurs for the red band and NIR. The pixel value is adjusted by using the following 

formula:  

 

𝐿𝑖(𝑉𝐼𝑆)′ = 𝐿𝑖(𝑉𝐼𝑆) − 𝑏𝑖 [𝐿(𝑁𝐼𝑅) − 𝐿𝑚𝑖𝑛(𝑁𝐼𝑅)]                                        (2) 

 

where 𝐿𝑖(𝑉𝐼𝑆)′= the corrected pixel value, 𝐿𝑖(𝑉𝐼𝑆)  = the initial pixel value, 𝑏𝑖  = the regression line slope, 

L(NIR) = the corresponding pixel value in NIR band and 𝐿𝑚𝑖𝑛 (NIR) = the minimum NIR value existing in 

the sample. The corrected bands (green and red) are combined again at the end of processing. The 

output of this process is a deglint image. Figure 12 illustrates the processing steps in the workflow.  

 

Lyzenga et al. (2006) [1]5 is the other algorithm in the second category that was used to conduct sun glint 

removal from the aerial imagery. This method uses the covariance between each visible band (green and 

red) and the NIR instead of the regression used in the Hedley et al. (2005) method. In addition, this 

algorithm uses the mean NIR in the region of interest instead of minimum NIR. This method was applied 

on sample images and compared with the previous method. Figure 13 shows the process of the Lyzenga 

et al. (2006) method.   
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Figure 12.  Flowchart of Hedley et al. (2005) algorithm for glint removal. 
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Figure 13. Flowchart of Lyzenga et al. (2006) algorithm for glint removal. 

 

Matlab code was developed to implement these two algorithms and process the imagery. The imagery 

was then exported and analyzed in ArcGIS. The effectiveness of sun glint removal was examined in two 

ways: first, the submerged pipelines were delineated manually via visual inspection and the result 

compared to the submerged pipeline delineation in the original imagery (performed within ArcGIS). 

Second, imagery with the two glint correction methods applied was used as input into edge detection 

image processing discussed below. The edge detection results were compared to the original non-glint 

corrected imagery results in terms of noise and number of detected edges.  

 

Edge Detection 

In this section, three different methods (Sobel, Prewitt, and Canny) are examined to detect edges in the 

imagery in order to delineate submerged pipelines. In all three methods, the multiband image was 

converted to gray cell images and then processed. Routines were developed in Matlab to implement 

these algorithms. The outputs were then exported in ArcGIS to analyze and illustrate pipeline structures. 

 

Sobel Edge Detection 

In this method, a pair of 3 x 3 convolution masks (Figure 14) is slid over the image as a focal operator 

manipulating a square of pixels at a time. The first convolution mask estimates gradient in the x-direction 

and the second estimates gradient in the y-direction. This operator works better on pixels that are closer 

to the center of the masks. In other words, edges of an image will contain some error because of this 

mask. An example for a sample image is shown in Figure 15.  

 

                                                   a) Convolution template 𝑆𝑥            b) Convolution template 𝑆𝑦 

Figure 14. Two convolution masks in Sobel method [17]. 

 

    

Figure 15. Sobel edge detection sample in Shamrock Cove shoreline 
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Prewitt 

This method works similar to the Sobel method. However, its masks are different from the Sobel method 

(Figure 16). In addition, unlike the Sobel operator, Prewitt operator does not place any emphasis on 

pixels that are closer to the center of the masks. Sample output of the Prewitt method along the 

Shamrock Cove shoreline is shown in Figure 17.  

 

 
Figure 16. The horizontal and vertical Prewitt edge detection masks [18]. 

 

    
Figure 17. Prewitt edge detection sample along the Shamrock Cove shoreline. 

Canny 

Canny edge detection uses linear filtering with a Gaussian kernel to smooth noise, and then computes 

the edge strength and direction for each pixel in the smoothing image. In what follows, the steps of Canny 

edge detection are explained. In the first step, the image becomes smooth with a Gaussian filter. Then 

the gradient magnitude and orientation is computed using finite-difference approximations for the partial 

derivatives. In the last step, non-maxima suppression (thinning process) is applied to the gradient 

magnitude using the double thresholding algorithm (Otsu) to detect and link edges. In this process, the 

edge strength of each candidate edge pixel is set to zero if its edge strength is not larger than the edge 

strength of the two adjacent pixels in the gradient direction. Thresholding is then done on the thinned 

edge magnitude image using hysteresis. In hysteresis, two edge strength thresholds are used. All 

candidate edge pixels below the lower threshold are labeled as non-edges. All pixels above the low 

threshold that can be connected to any pixel above the high threshold through a chain of edge pixels are 

then labeled as edge pixels [19].  

 

Canny method is a tradeoff between three parameters which are sigma, low threshold, and high threshold. 

By changing the value of these parameters, the connectivity and noise will be changed in the output 

image. These parameters were chosen here based on trial and error in terms of noise and edge 

connectivity in the output. Therefore, in order to find the optimal values for the parameters, different 

values were given to the sigma and threshold parameter to examine the noise of the output and the 

connectivity of the detected edges (Table 5). First, the values of low threshold and high threshold were 

set as [low T=.5, high T=1(pixel size)]. Then the other values were examined as [low T=5, high T=10]. In 
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this case, the output showed that most of the edges were lost. When the value of low threshold and high 

threshold were given 1 and 3 respectively, the results were much better when compared to other 

threshold values tested. Different values of sigma were examined as well. The results showed that small 

values of sigma that are less than one, for example 0.1 or 0.5, make more noise in the output while 

detection with large values resulted in blurry edges. Figure 18 shows the effect of different parameter 

settings on the results of the Canny edge detector. In addition, the Canny edge detector was run on 

deglint images using both glint removal methods and outputs compared.  

 

Table 5. Canny edge detection parameter settings evaluated. 

No Operator Sigma Low Threshold High Threshold 

1 Canny 1 .5 1 

2 Canny 1 5 15 

3 Canny 1 1 3 

4 Canny 0.1 1 3 

5 Canny 0.5 1 3 

6 Canny 2 1 3 

7 Canny 5 1 3 

8 Canny 10 1 3 

 

Evaluating Results of Edge Detection 

Two sources are used for ground truth. The first one is the existing shape file of pipelines obtained from 

the TGLO. The second source is submerged pipelines manually delineated using the aerial imagery. 

ArcGIS was used for the geodatabase and the outputs overlaid with each other. The evaluation was 

based on visual inspection, which means that the pipes could be confidently detected by the analyst in 

the imagery. To quantitatively assess performance, a set of four metrics were defined: number of edges, 

noise or unwanted detail, localization or displacement from the original position, and edge continuity. 

Noise is salt and pepper effect in the result or unwanted edges that causes ambiguity in the result. Edge 

continuity means the detected edge is a continuous line, not a fragmented line dependent on local scale. 

Noise and edge continuity are described as the attributes: High, Medium, and Low. Noise and edge 

continuity are not absolute. The metrics were manually measured for each result. For example, detected 

edges were counted manually by comparing to ground truth. Furthermore, the three edge detection 

methods were run over glint corrected images and results compared to the original images. The 

processing approach utilized was the same as the original images.  
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Figure 18. Example of Canny edge detection sensitivity to parameters based on Table 5. 

 

4.5 Results 

 

4.5.1 Bathymetric Lidar 

 

DEMs were generated for three cell sizes (0.50, 1, and 2 m) in each interpolation method: TIN, IDW, and 

B-spline. Effects of shaded relief settings for the different settings were also investigated (see Appendix B, 

Figures B1-B5). The output of the three methods was compared in terms of vertical accuracy and 

effectiveness for delineating pipelines. RMSE was calculated for each cell size (0.5, 1, and 2 m) relative 

to the RTK GPS points. Table 6 shows the result for each method evaluated. In addition, RMSE based on 
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landcover (bathymetry, land, and vegetation) was calculated for each cell size and interpolation method 

(Tables 7 to 9).  

 

Table 6. Interpolation method vertical RMSE by cell size – all points 

No Interpolation Method RMSE (m) 

Cell size =0.50 

m 

RMSE (m) 

Cell size =1 

m 

RMSE (m) 

Cell size =2 

m 

1 Multilevel B-Spline 0.16 0.17 0.21 

2 2D  Delaunay TIN 0.30 0.24 0.27 

3 IDW 0.29 0.25 .28 

 

Table 7. Interpolation method vertical RMSE by cell size – bathymetry  

NO Interpolation 

Method 

RMSE (m) 

Cell size =0.50 

m 

RMSE (m) 

Cell size =1 

m 

RMSE (m) 

Cell size =2 m 

1 Multilevel B-Spline 0.17 0.06 0.28 

2 2D  Delaunay TIN 0.09 0.07 0.10 

3 IDW 0.10 0.14 .15 

 

Table 8. Interpolation method vertical RMSE by cell size – exposed land 

NO Interpolation 

Method 

RMSE (m) 

Cell size =0.50 

m 

RMSE (m) 

Cell size =1 

m 

RMSE (m) 

Cell size =2 m 

1 Multilevel B-Spline 0.13 0.09 0.20 

2 2D  Delaunay TIN 0.08 0.08 0.13 

3 IDW 0.13 0.28 0.31 

 

Table 9. Interpolation method vertical RMSE by cell size – vegetated land 

NO Interpolation 

Method 

RMSE (m) 

Cell size =0.50 

m 

RMSE (m) 

Cell size =1 

m 

RMSE (m) 

Cell size =2 m 

1 Multilevel B-Spline 0.11 0.05 0.13 

2 2D  Delaunay TIN 0.43 0.44 0.27 

3 IDW 0.15 0.06 0.30 

 

RMSE based on all RTK GPS points showed that the multilevel B-spline method had the lowest RMSE 

between all three interpolation methods for all three cell sizes. In this case, it showed slightly more 

accurate surface reconstruction compared to the other methods tested here. In the bathymetry part, the 

multilevel B-spline performed best for cell size 1 m compared to TIN and IDW at the same cell size, while 

this method had the worst result for cell size 2 m. TIN method had the best result for RMSE over exposed 

land while it had the worst result in vegetation for all cell sizes. IDW had the lowest RMSE in vegetation 

compared to land and bathymetry. 
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For submerged pipeline delineation, shaded reliefs of the DEMs were generated for each interpolation 

method using three sun angles (30, 45, 60 degrees) and the parameter settings in Table 4. Visual 

inspection showed that the B-spline interpolation proved superior for this application. As shown in Figure 

19, four major submerged pipelines are readily apparent in the multilevel B-spline DEM for all three cell 

sizes tested. In comparison, only two pipelines are readily identifiable in the 2D TIN Delaunay DEM 

(Figure 20) and only one pipeline is readily apparent in the IDW DEM (Figure 21). To verify results, the 

existing pipeline shapefile from the TGLO was overlaid on the shaded reliefs as ground truth. It should be 

noted that some of the pipes in the DEM do not coincide with those in the TGLO shapefile. The 

misplacement may occur because of differences in georeferencing accuracy between datasets. 

Furthermore, the shapefile dataset may have some outdated information relative to the lidar survey. The 

B-spline interpolation method was used to delineate pipelines in ArcGIS, because of its performance. Due 

to the B-spline’s performance, it was used to interpolate a topo-bathymetric DEM at 1 m resolution for the 

purpose of delineating pipelines within ArcGIS. 

 

       

Figure 19.  (left) Results of multilevel B-spline interpolation show four major pipelines in the shaded relief 
DEM. (right) GLO shapefile is overlaid on the shaded relief as ground truth. 

 

     

Figure 20. (left) Results of TIN interpolation show two major pipelines in the shaded relief DEM. (right) 
GLO shapefile is overlaid on the shaded relief as ground truth. 
 

 

 



27 
 
 

 

    

Figure 21. (left) Results of IDW interpolation shows only one major pipeline in the shaded relief DEM. 
(right) GLO shapefile is overlaid on the shaded relief as ground truth. 
 
4.5.2 Aerial Imagery – Glint Correction 

 

Image enhancement was applied to the airborne images as a preprocessing approach prior to any further 

image processing. As mentioned in the methodology, two algorithms in sun glint correction were 

evaluated: Hedley et al. (2005) and Lyzenga et al. (2006) [14], [15]. Sun glint contamination can cause 

substantial loss in data fidelity below the water surface. In fact, these methods can generally only correct 

moderate glint and large errors may still remain in the brightest glint areas. The Hedley et al. (2005) 

method uses the minimum NIR in its calculations while the Lyzenga uses mean NIR. Both methods have 

been successful in increasing the proportion of data below the surface that can be retrieved from shallow 

water. Hedley et al. (2005) loses less data compared to Lyzenga et al. (2006) in the airborne imagery, 

because it subtracts minimum NIR from the image whereas Lyzenga et al. (2006) subtracts the average 

NIR from the image. Figure 22 shows sample results of glint correction by the two methods on a set of 4 

images. 
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                      (a)                                                  (b)                                               (c) 

Figure 22. Glint results for four representative imges by the two methods. (a) Original Image, (b) Deglint 
Image (Hedley et al., 2005), (c) Deglint Image (Lyzenga et al., 2006) (image size 355 x 267 meters). 
 

Sun glint occurs when sun radiation is directly reflected to the sensor over the water surface. To examine 

this effect, the behavior of radiation in a sample image over shallow water before and after glint correction 

for each method was computed. Figure 23 below shows the effect of glint removal on a sample image 

based on digital number value and wavelength of the three bands (NIR, Green, and Red). The result 

shows that the brightness decreases when glint is removed from the image due to the subtraction of 

digital number values from the imagery.  Hedley et al. (2005) method has lower radiance compared to the 

Lyzenga et al. (2006) because the NIR values are taken towards the minimum value while the mean NIR 

is used in the Lyzenga method. Both methods were used for further processing on the data set. Figure 24 

shows a mosaic of the deglint images using the Hedley method. 

 

 

Figure 23. Sun glint removal effect on digital numbers averaged across several pixels in a sample image. 
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Figure 24. Deglint mosaicked data set using the Hedley method. 

 

A shape file was created in ArcGIS and the submerged pipelines manually delineated based on visual 

inspection in the original and sun glint corrected imagery. Sun glint corrected imagery provided better 

visualization to detect the pipes. However, the number of detected pipelines was the same. In both data 

sets, 125 pipes were delineated.  

 

4.5.3 Aerial Imagery – Edge Detection 

 

As mentioned in the methods section, three different methods of edge detection were examined to detect 

submerged pipelines: Sobel, Prewitt, and Canny. Each method was assessed based on parameters 

including detected edges, noise, displacement from center, and edge continuity. Edge detection 

operations were run on the set of images and these parameters were measured manually for each result 

by visual inspection to ground truth in ArcGIS. The TGLO pipeline shapefile coupled with pipelines 

delineated using the glint corrected aerial imagery served as the “ground truth” feature class for 

comparison. Table 10 shows results of the evaluation for each edge detection method.  

 

Table 10. Evaluation based on ground truth. 

No Approach Edge Detection Noise Localization Edge Continuity 

1 Canny(1,[1,3]) 74 out of 125 Medium 0.25 m off from center High 

2 Sobel 50 out of 125 Low 0.35 m off from center Low 

3 Prewitt 50 out of 125 Low 0.35 m off from center Low 
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Referring to Table 10, results in this case show that Sobel and Prewitt methods work closely to each 

other in terms of delineating pipelines and noise. These operators can only delineate the pipelines up to 

40%, although their noise is less than the Canny method (Figure 25). Canny method depends on its 

parameters in delineating the features. In other words, decreasing “σ” would show more detail, and 

changing thresholds would change edge linkage. The parameter values of “σ” and threshold shown in 

Table 5 were evaluated. Results showed that 𝜎 = 1, Low T =1, and High T= 3 resulted in the best 

combination of the values tested providing more than 60% of pipelines automatically detected. Figure 26 

shows the result of the Canny method. 

 

              
Figure 25. Ground truth: Sobel edge detection (Left); Prewitt edge detection (Right); the red lines in both 

pictures show the ground truth.  

 

Although Sobel and Prewitt‘s methods created lower noise in the image, they could not find as many 

edges as the Canny did. The result shows that the output of these methods is generally similar to each 

other. In spite of the Canny method having more noise in its results, it can detect more edges; many of 

which are pipelines in this case study. Therefore, neither Sobel nor Prewitt’s methods were determined 

effective for operation on this data set. The important note is that the parameter values of Canny method 

in this study will not necessarily perform well on other data sets. The optimal parameter settings may vary 

from one data set to another. It depends on many other factors including imagery type, quality, blurring, 

benthic type, ambient conditions, etc.  

 

It should be mentioned that the chance of detecting submerged features in clear water is better than 

turbid water due to deeper visible light penetration. Glint corrected images did not prove more useful for 

visual delineation of submerged pipelines in this case based on no measurable improvement in the 

number of pipes identified. However, edge detection algorithms were run over the two sun glint corrected 

images. Canny operator detected more edges compared to the original imagery, while the result did not 

change for the other edge detection operators. Table 11 shows the result in terms of number of detected 

edges in all three methods. The other evaluation parameters did not change. Results show that in spite of 

the output having more noise than the output on raw images, the Canny method applied to glint corrected 

imagery improved the ability to detect more edges (pipes) in shallow water. By removing glint from the 

surface water reflection, reflection through the water column and underlying surface structure below 

provided enough enhancement to track more linear features. Therefore, deglint imagery was helpful for 

edge detection image processing of this data set and resulted in the detection of more edges. Figure 27 

shows an example of an extra edge detected by the Canny operator when using glint corrected imagery. 
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Figure 26. Results of Canny edge detection using the parameter settings: [1, [1, 3]]. Left column shows 
edge detection results for different regions. Right  shows the same but with ground truth pipelines overlaid. 
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Figure 27. Comparing edge detection in original and deglint image sample using the Canny operator. The 
blue arrow shows the location of a pipe. a) Original image (with glint)  b) glint corrected image. 
 

Table 11. Evaluation based on ground truth-deglint imagery 

No Approach Detected edges (Hedley 

2005) 

Detected edges (Lyzenga 

2006) 

1 Canny(1,[1,3]) 85 out of 125 85 out of 125 

2 Sobel 51 out of 125 50 out of 125 

3 Prewitt 50 out of 125 50 out of 125 

 

4.6 Conclusion 

 

Figure 28 shows the final results of pipeline delineation created by fusing pipelines manually delineated 

from the bathymetric lidar data and aerial imagery. Manual delineation of pipelines within the aerial 

imagery was enhanced using glint correction and edge detection image processing methods in fusion. 

Based on the results, the outputs showed that four major pipes with 8” to 12” diameter were detected by 

processing bathymetric lidar data and generating DEMs by B-spline interpolation (red arrows point to the 

pipes in Figure 28). Other pipes, which were located near shoreline, were not detected by the lidar 

approach. Existing features at the level of the pipes, the size of the pipes, and the turbidity of the water 

can interfere with detecting pipes through a lidar DEM. Also, pulse length of the lidar is a limiting factor in 

resolving water surface from bottom. As water depth becomes shallower the signal from the surface and 

features on bottom gets convolved reducing discrimination. If some features like sea grass, mud, or reef 

exist near or at the level of the pipes, there is not enough height difference to be distinguished in the DEM. 

Small pipes also could not be detected with this data set because of the point density of the bathymetric 

lidar data and consequently the resolution of the DEM. The most important factor is the turbidity of water, 

which impedes laser penetration through the water column. Edge detection image processing helped 

detect more pipes using visual inspection but not ones in the deeper water where turbidity limited depth 

penetration for passive imaging (visible bands). Therefore, only submerged pipes near the shoreline in 

shallower water were detected using the aerial imagery (blue arrows point to the pipes delineated from 

the imagery in Figure 28). In contrast, lidar was superior for detecting pipes in deeper water but restricted 

to larger pipes. 

 

The bathymetric lidar dataset was deemed to be not as useful as anticipated. This was not a failure of the 

survey method employed by the BEG. Rather it is due to inherent limitations in current bathymetric lidar 

system resolvance power when trying to delineate small pipeline structures (e.g. < 6 cm) with sizes 

smaller than the laser diameter footprint. Based on this analysis it is recommended that future surveys 

targeted for this objective plan as best as possible for ideal water conditions, employ more scan overlap, 

and fly at minimum allowed altitudes with as high a pulse rate as is functional for dense sampling and 

high signal-to-noise. Nonetheless, the bathymetric lidar still proved useful in detecting larger submerged 

pipelines in deeper water, and coupled with the aerial imagery proved to be a value added product. 

Development of automated approaches and improved methods to better exploit the bathymetric lidar data 

for detection of submerged pipelines is a work in progress. 

 

Based on the edge detection results, the performance of the Canny operator was better than the Sobel 

and Prewitt methods in terms of detecting the edges. As mentioned above, turbidity of the water is one of 

the impeding parameters in edge detection methods. The other issue with the edge detection methods 
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observed in this analysis is the existence of noise (unwanted edges) in the output. The existing noise 

decreased the effectiveness of the edge detection methods. Such methods will perform better if the 

existing noise is suppressed in one way or another using filtering and edge contiguity approaches.  

 

Finally, two methods were used to remove the sun glint from high resolution aerial imagery, which were 

the Hedley et al. (2005) and the Lyzenga et al. (2006) [14], [15]. These two methods rest on the 

assumption that all NIR radiation is absorbed by the water, and hence the water-leaving radiance shall be 

zero. The accuracy of that assumption depends on local conditions; for example, in shallow or turbid 

water NIR radiation may be reflected into the air by the seabed or sediment before absorption. The only 

difference between the methods of Hedley et al. (2005) and Lyzenga et al. (2006) is how they handle the 

water-leaving NIR to apply the correction. Based on the results in this study, sun glint removal image pre-

processing did not succeed in enhancing visual delineation of submerged pipelines as much as 

anticipated. However, results of the Canny edge detection method were improved for imagery with sun 

glint correction applied. In contrast, results for the Sobel and Prewitt methods did not change.  Further 

analysis on the optimal synergism of these methods to improve aerial imagery of submerged structures is 

needed. With the advent of unmanned aircraft systems (UAS), such methods will become even more 

valuable for benthic mapping and hazards detection in the littoral zone. 

 

 
Figure 28. Final result of submerged pipeline delineation in Shamrock Cove overlaid on the aerial iamge 

mosaic. Results show structure based on a January 29, 2015 airborne lidar and imaging survey. Red 

arrows are detected by the lidar DEM and blue arrows are detected by aerial imagery. The size of the 

pipelines is provided by the TGLO GIS pipeline layer.  
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5. Rookery Island Characterization and Vulnerability (Task 3, 4, 5) 

 
5.1 Introduction 

 

This component of the project utilizes airborne lidar measurements of spoil island topography within the 

Upper Laguna Madre to define a monitoring benchmark for characterization of rookery island habitat 

vulnerability. Due to their low elevation and small extent, these islands are vulnerable to wave-driven 

erosion, storm impact, and relative sea level rise (Figure 29). The area under observation for this study is 

a chain of islands extending from the JFK causeway and along the Intracoastal Waterway from Corpus 

Christi Bay south to the Land Cut below Baffin Bay (~100 sq. km). A map of the region can be seen in 

Figure 30 (and Figure 1).  It is important to mention that not all islands in the study region serve as 

waterbird rookery habitat due to different factors such as their size, predation activity, and/or human 

activity. 

 

The lidar data set was collected by the University Of Texas BEG on January 29, 2015 using their 

Chiroptera topo-bathometric LiDAR system. Only the topographic lidar points were used for this analysis. 

Point densities of > 4 points/m² were obtained over exposed land. Figure 31 shows an example of the 

topographic lidar point cloud over Shamrock Island investigated in Task 2 (refer to Chapter 4). The World 

Geodetic System of 1984 (WGS84) is the geodetic model for the data, which is projected using Universal 

Transverse Mercator (UTM) Zone 14N meters. Elevation is referenced to the North American Vertical 

Datum of 1988 (NAVD88, Geoid 12). Refer to Chapter 3 for more details on the lidar survey.  

 

 

   
Figure 29. Images of spoil islands in the study site illustrating their low elevation and small extent.  
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Figure 30. Map showing the location and extent of the study site.  

 

 
Figure 31. Topograhic lidar point cloud of Shamrock Island, which lies to the north of the study zone. 
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5.2 Methods 

 

There are three main tasks for this component of the project: 1) create accurate, high-resolution digital 

elevation models (DEM) of island terrain (Task 3 in scope of work), 2) create a GIS layer to describe 

spoil/rookery island morphometrics (Task 4 in scope of work), and 3) create inundation maps of island 

vulnerability (Task 5 in scope of work). Figure 32 shows a conceptual framework of the overall approach. 

Each task will be discussed in a separate section below.   
 

 
Figure 32. A conceptual framework showing the workflow for this component of the project.  

 

5.2.1 DEM Generation (Task 3) 

 

Ground Point Filtering 

A set of command line tools used for point cloud processing called LAStools was used to filter and 

process all of the point clouds. The lasground filtering tool was used to classify points into ground or non-

ground points for the purpose of generating bare-earth DEMs of each island. The tool implements a 

progressive TIN densification filter based on [20] and provides three main parameters to adjust (there are 

others for fine tuning): step size, intensity, and mode. The step size is an area in meters that evaluates 

the points that fall within it. Larger objects such as buildings can be resolved and filtered out with a larger 

step size and more detailed objects can be retained with a smaller step size. Larger step sizes result in 

more non-ground points being correctly identified and removed but at the expense of removing more true 

ground points. In contrast, smaller step sizes retain a larger number of ground points at the expense of 

retaining more non-ground features. Because of this tradeoff, the step size parameter requires tuning. 

Lidar data points from Shamrock Island area where the RTK GPS survey was conducted (refer to Chapter 

3) were used to tune the filter step size. The point cloud was filtered with a range of step sizes and then 

visually analyzed in QuickTerrain Modeler, a 3D point cloud rendering software. A step size of 8 meters 

appeared to remove most vegetation and all of the structures without removing too many ground points. 

Any step size much less than 8 meters was not successful at removing dense groves of vegetation or 

large buildings. Filtering then took place on all of the point clouds using an 8 meter step size (Figure 33). 

Once the point clouds were filtered they were opened in QuickTerrain Modeler where they were quality 

checked to ensure that buildings and large vegetation features had been properly removed.  
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Figure 33. Images of a non-filtered (left) and filtered island point cloud (right). 

 

Ground Points to DEM Interpolation 

LAStools offers an interpolation tool called Blast2dem. This tool is capable of reading in billions of LiDAR 

points from the LAS/LAZ binary formats commonly used to share lidar data. It then triangulates them into 

a seamless triangulated irregular network (TIN) which is then rasterized into a DEM. Only classified 

ground points were used for DEM creation. The resolution for all generated DEMs was set to 1 meter 

based on the average ground point density after filtering. A parameter was set to not allow triangles with 

edges greater than 50 meters to be rasterized. This was to prevent individual islands in close proximity to 

each other from being rasterized into a single DEM. Each island’s DEM was visually inspected to verify 

that all large vegetation and buildings had been properly removed (Figure 34). If any artifacts were 

observed, the point cloud for that island was re-filtered by incrementally increasing or decreasing the step 

size. The DEM for that island was then regenerated, inspected, and the process repeated until a sufficient 

result was obtained (Figure 35). Refer to Chapter 3 for details on vertical accuracy of the lidar-derived 

DEMs. 
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Figure 34. Features such as building and vegetation exist in the left DEM where they have been removed 

in the right. This type of visual inspection took place over every DEM.  

 

                     
Figure 35. Examples of the resulting island DEMs. Color-bar elevations are in NAVD88 meters. 

 

5.2.2 GIS-Layer of Island Morphometrics (Task 4) 

 

Creating the GIS Shapefile 

The shapefile of the islands was created by contouring each island DEM at an elevation of 0.3 meters. An 

elevation of 0.3 meters served as an average mean sea level (MSL) among all islands in the upper 

Laguna Madre plus 10 cm error to account for lidar vertical uncertainty. This 0.3 meter shoreline contor 

elevation provides a baseline elevation for future monitoring efforts to assess island volumetrics from lidar 

surveys. Furthermore, this value helped ensure the removal of spurious lidar water surface returns. Below 

this 0.3 m elevation cutoff there were many points stemming from the water surface.  Before the DEMs 

were contoured, a smoothing 5x5 low pass filter was used to smooth the DEMs. This smoothing step 

allowed for the contour lines to be continuous. Once the countour line was created it was manually traced 
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using an ArcGIS tracing tool to create the shapefile (Figure 36). The resulting shapefile consists of 172 

islands. The island shapefile uses WGS84 UTM Zone 14N meters as a spatial reference system.  

 

      
Figure 36. The image on the left shows the DEM with the 0.3 meter contour line drawn. The image on the 
right is the resulting shapefile after manually tracing the contour line.  

 

Calculating Island Morphometrics 

With the DEM and shapefile of each island, it was possible to calculate morphometrics that describe the 

island characteristics. For each island the following statistics and morphometris were calculated: x 

centroid, y centroid, perimeter, area, volume, standard deviation of elevation, mean of elevation, range of 

elevation, maximum elevation, and pixel count. Zonal statistics within ArcMap was used to calculate all 

statistics and the Calculate Geometry tool was used to determine the perimeter, x centroid, and y centroid. 

The volume of each island was determined by calculating the height above the 0.3 m NAVD88 shoreline 

contour elevation for each pixel that was coincident with the shapefile. Because the DEM resolution was 1 

m, volume per a cell was easily computed by taking the difference between the height of that cell and 0.3 

m x 1 square meter. The volume of all pixels was then summed to derive the total island volume. Note 

that the volume above 0 m NAVD88, which is often used for volumetrics, can easily be computed from 

this GIS-layer by multiplying the island area times 0.3 m then adding that total to the volumetric total for 

the island. 

 

5.2.3 Vulnerability Maps of Rookery Island Inundation to Sea Level Rise 

Introduction 

Created by Warren Pinnacle Consulting, the Sea Level Affecting Marshes Model (SLAMM) simulates the 

process of wetland conversions and shoreline modifications during long term sea level rise. SLAMM is 

utilized by a number of organizations including the National Oceanic and Atmospheric Administration 

(NOAA), the Environmental Protection Agency (EPA), the National Wildlife Federation (NWF) and many 

more. The model allows for the input of specific and unique data that describes the topology and sea level 

characteristics at a local level. For this reason we chose to use SLAMM for modeling a set of spoil islands 

in the Upper Laguna Madre and their vulnerability to long term sea level rise.  
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The model requires three raster inputs of the study site, 1) a digital elevation model (DEM), 2) a land type 

classification raster, and 3) a raster that describes the slope of the area. Also required are parameters 

that describe the local sea level such as the historic sea level rise trend (mm/yr), the mean sea level 

(MSL), and the great diurnal tide range (The difference in height between mean higher high water and 

mean lower low water).  

 

DEM 

Lidar-DEMs at 1 meter resolution were created from the January 29, 2015 UT BEG lidar survey data; the 

process for their creation is described above. 

 

Land Classification 

The resulting DEMs were used to classify two land cover types, land and water. All pixels above the local 

MSL were classified to undeveloped dry land and the pixels equal to or below the MSL were classified as 

estuarine open water (Figure 37). The MSL was determined by the Texas Coastal Ocean Observation 

Network (TCOON) buoy reading relative to NAVD88 (vertical datum used for referencing of the LiDAR 

elevations). Because there is a slight downward trend in MSL from the northern end to the southern end 

of our study site, the site was broken up into three sections and each section utilized the MSL that was 

most appropriate. A map of the MSL values can be seen in Figure 38. 

 

 

 
Figure 37. Example of land type classification raster. 
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Figure 38. NAVD88 referenced MSL, or Average Water Levels, along the southern Texas coast. The three sites 

used for this study were Packery Channel, South Bird Island, and Baffin Bay, north to south respectively. Source: 

Conrad Blucher Institute for Surveying and Science. 

 

Slope 

The slope of each island was determined by utilizing the Slope (Spatial Analysis) tool within ArcMap. 

Units are in degrees. An example of a resulting slope raster can be seen in Figure 39.  

 

 
Figure 39. Slope raster of one of the spoil islands. Units are in degrees.  
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Sea Level Rise Historic Trend 

The historic sea level rise trend was obtained from the NOAA Tides and Currents website using the 

nearest NOAA tidal gauge within the non-exposed bay system at Rockport TX (Gauge 8774770). 

Changes in MSL have been computed using a minimum span of 30 years of observations at each 

location. The measurements have been averaged by month to remove the effects of higher frequency 

phenomena in order to compute an accurate linear sea level trend. The MSL trends measured by tide 

gauges that are presented on the website are local relative MSL trends as opposed to the global seal 

level trends. Tide gauge measurements are made with respect to a local fixed reference level on land; 

therefore, if there is some long-term vertical land motion occurring at that location, the relative MSL trend 

measured there is a combination of the global eustatic sea level rate and the local vertical land motion. 

(http://tidesandcurrents.noaa.gov/sltrends/sltrends.html).   

 

The mean sea level trend at the Rockport gauge is estimated to be 5.33 mm/year with a 95% confidence 

interval of +/- 0.47 mm/year based on monthly mean sea level data from 1937 to 2015 which is equivalent 

to a change of 1.75 feet in 100 years (Figure 40). The 5.33 mm/year trend was used for this study. 

 

 
Figure 40. MSL linear trend estimated based on water level readings at the Rockport, TX tidal gauge. Source 

NOAA. 

 

Mean Sea Level to NAVD88 Offset 

The MSL required for the model was taken from the same TCOONs water level readings that were used 

for the land classification (http://www.cbi.tamucc.edu/TCOON/). The three MSL values used for each of 

the three sections of the study site were 0.22 m (Packery Channel), 0.14 m (South Bird Island), and 0.1 m 

(Baffin Bay) from north to south respectively (Figure 38).  

 

Great Diurnal Tide Range 

The great diurnal tide range is the difference in height between mean higher high water and mean lower 

low water. This value was taken from the Packery Channel observation buoy. Unfortunately the South 

Bird Island and Baffin Bay buoys that were used to obtain the MSL were not reporting the diurnal tide 

http://tidesandcurrents.noaa.gov/sltrends/sltrends.html
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range at the time of this work. Therefore, the Packery Channel value of 0.11 m was used for all three 

sections of the study site.   

 

Modeling Method 

The parameters associated with each section of the study site were added to the model parameter list 

and the raster products for each section were added to the file setup page. The model was set up to 

create simulations starting from 2015 until 2100 at 25 year increments, therefore 5 maps were created for 

each section of the study site for a total 15 SLAMM maps. Each map was brought into ArcMap to create 

the final map product. Percent and areal change in exposed and submerged landcover were then 

computed based on the SLAMM model run and results reported. Furthermore, there comparison maps 

(one for each study section) show the difference in dry land area for 2015 and 2100. 

 

5.3 Results 

 

5.3.1 Results of Island Morphometrics 

 

The GIS polygon layer of island shorelines (called here the Rookery Island shapefile) stores a variety of 

statistical attributes that help to describe and quantify characteristics associated with the individual 

islands. Table 12 below summarizes the statistical results of island morphometrics based on the lidar-

derived DEMs.  These results show the minimum and maximum values observed within the Upper 

Laguna Madre study region along with the value’s associated island name. The naming convention is 

based on the naming convention utilized by the UT BEG in their lidar survey data. 

 
Table 12. Statistical results of island morphometrics derived from the lidar-DEMs. 

 
 

 

 

Island Name Value

Max Volume Causeway Islands A 564,204 m³

Min Volume Marker 72 Spoil Island NM 152 D 9.412 m³

Highest Max Elevation West of North Bird Island K 5.605 m

Lowest Max Elevation Marker 72 Spoil Island NM 152 D 0.379 m

Highest Min Elevation Marker 77A Spoil Island NM 155 0.288 m

Lowest Min Eleavtion Marker 103117 Spoil NM 207221 A 0.2 m

Max Mean Elevation West of North Bird Island K 1.609 m

Min Mean Elevation Marker 72 Spoil Island NM 152 D 0.325 m

Max STD Elevation West of North Bird Island K 1.119 m

Min STD Elevation Kennedy Causeway Islands1 G 0.026 m

Max Elevation Range West of North Bird Island K 5.377 m

Min Elevation Range Marker 72 Spoil Island NM 152 D 0.107 m

Max Area Causeway Islands A 563,423 m²

Min Area Marker 72 Spoil Island NM 152 D 29 m²

Max Perimeter Causeway Islands A 7364.608 m

Min Perimeter Marker 72 Spoil Island NM 152 D 23.83421 m
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5.3.2 Results of the SLAMM Modeling 

 

Appendix C shows results of the SLAMM runs for each study section in 25 year increments from 2015 to 

2100; and three comparison maps of landcover change between 2015 and 2100 (one per study region: 

north, mid, south). SLAMM utilizes 23 different land cover categories to describe the initial land type 

under analysis as well as the transitioning land as the sea level rises. Each SLAMM map displays a table 

that describes the land cover change that occurs between the start date (2015) and the projected date. 

Table 13 below shows results from the 2015 to 2100 SLAMM landcover change comparison map (north 

section). The dry land loss column shows the amount of dry land that was lost to each land type. Similarly, 

the dry land percent loss column shows the percentage of dry land that was lost to each land type. A 

portion of what was dry land in 2015 is projected to be converted into 4 different land types; transitional 

marsh/scrub shrub, regularly flooded marsh, tidal flat, and estuarine open water. However, the main focus 

here should be on the difference in exposed and dry land cover (i.e. estimated inundation and land loss 

due to SLR); not necessarily the type of transitional landcover. Because these are spoil islands, they 

likely do not modulate the same as a natural marsh system assumed by SLAMM.  

 

Table 13. Results from the 2015 to 2100 SLAMM landcover change comparison map (north section). 

 
 

Because these tables show the land cover change over time, the initial 2015 maps will not display a table. 

It should be noted that the 2015 to 2025 maps for both the mid and south section show negligble land 

cover change. As the model starts to accelerate sea level rise based on the input rate, these sections do 

start showing landcover transition in later years out to 2100.  

 

5.4 Conclusion 

 

The SLAMM model is capable of taking into consideration a large number of different parameters such as 

wind and wave driven shoreline erosion, beach sedimentation rate, sediment transport flux, vegetation 

accretion, and other factors. For this study, we created a generalized model of how the rising sea level 

can affect the spoil islands of the Upper Laguna Madre assuming standard beach landcover. These 

results do not account for historic shoreline erosion trends on the islands, episodic events, anthropogenic 

factors, or local sea level rise rates adjusted for scenarios based on worst case global projections of SLR 

over the coming century. Furthermore, the rate of relative sea level rise likely varies somewhat across the 

study region relative to the rate reported in Rockport due to land subsidence variability from compaction 

and other factors. The models created for this study, however, do simulate the impacts from a rising sea 

in regards to real world inputs such as high-resolution topography, slope, local mean sea level, tidal range, 

and regional historic trend in sea level rise. As such, these SLAMM maps provide a projection of potential 

land loss beyond what is capable with a standard bathtub model of sea level inundation. Simulated land 

loss from these results provides resource managers a quantitative assessment for the purpose of 
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identifying vulnerable rookery island habitat for water bird species. It is important to mention that the 

results here may underestimate potential land loss due to the non-coupling of shoreline erosion trends 

and episodic events. More analysis and simulation should be done at specific islands of interest where 

vulnerabilities are identified and mitigation efforts planned based on this assessment.  
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6. Conclusion 
 

The first component of this project supported an airborne bathymetric lidar and digital imaging survey 

(conducted in January 2015) of a region within Shamrock Cove (~20 square kilometers) located in Corpus 

Christi Bay. The purpose of this survey was to investigate the potential of bathymetric lidar and aerial 

imagery in fusion to map submerged structures. Deliverables from this component included: (1) topo-

bathymetric lidar survey, (2) lidar-derived DEM of topography and bathymetry, (3) GIS-layer delineating 

submerged structures utilizing the bathymetric lidar and aerial imagery. As discussed in Chapter 4, 

several methods were implemented and investigated to improve submerged structure delineation 

including glint removal and edge detection. The data products support a TGLO initiative to map and 

remove derelict structures (e.g. abandoned pipelines) in the region that pose a hazard to recreation and 

navigation. 

 

The second component of this project utilized airborne lidar measurements (collected in January 2015) of 

island topography within the Upper Laguna Madre to characterize rookery island habitat vulnerability. The 

analysis targeted the chain of spoil islands near the JFK causeway and along the Intracoastal Waterway 

from Corpus Christi Bay south to the land bridge below Baffin Bay (~100 sq. km).  The following 

deliverables were created: (1) high-resolution DEMs and DSMs of island terrain with accuracy 

assessment; (2) GIS-layer to describe island morphometrics; (3) inundation maps of island vulnerability to 

sea level rise. All data products are available and accessible via online sources as outlined in Appendix D. 

The project outputs can be applied by resource managers to monitor island evolution, identify vulnerable 

habitat or alternative habitat, derive new understanding about nesting and landscape interaction, and 

assess coastal hazards impacts.  
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Appendix A. RTK GPS vs. LiDAR Statistics 
 
Figures below show histograms for elevation differences measured between LiDAR and RTK GPS for 

different landcover types on Sharock Island as shown in Table 1 of Chapter 3. 
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Water Statistics (depths < 1.5 m) 
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Appendix B. Results from Bathymetric DEM Interpolation at Shamrock Cove 
 

 
Figure B1. B-spline interpolation cell size=2 a) DEM   b) Shaded relief   h= 30 c) Shaded relief h= 45      d) 

Shaded relief h= 60 
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Figure B2. B-spline cell size=1   a) DEM   b) Shaded relief  h=30    c) Shaded relief  h=45        d) 

Shaded   relief  h=60 
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Figure B3.  B-spline cell size 0.50   a) DEM    b) Shaded relief  h= 30   c) shaded relief   h= 45                                                                                                                               

d) shaded relief   h= 60     
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Figure B4.  TIN cell size 2   a) DEM    b) Shaded relief h= 30   c) shaded relief   h= 45  d) shaded relief 
h= 60 
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Figure 5.5.  IDW cell size 2   a) DEM    b) Shaded relief h= 30   c) shaded relief   h= 45   d) shaded relief 
h= 60. 
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Appendix C. SLAMM SLR Inundation Models of the Upper Laguna Madre 
 

North Section 
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Mid Section 
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South Section 
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Appendix D. Data Dissemination for Web Accessibility 
 

Explanations of how the deliverables by task were shared are explained below. For more details 

on product deliverable times and dissemination dates, refer to the quarterly progress reports. 

 

Raw Lidar Data and Pipeline Segmentation GIS-Layer (Task 1 and 2) 

All raw point cloud data provided to the team by the UT BEG have been directly shared to 

regional TGLO (Ms. Amy Nunez) and TGLO headquarters in Austin (Ms. Julie McEntire). The 

raw survey data have also been shared directly with NOAA digital coast. NOAA provided an 

external drive (received on June 30, 2016) to upload the data and send back to them for 

distribution. At the time of this report, the data is in process of being sent back to NOAA. From 

there, accessing of the data via Digital Coast will depend on NOAA’s timeframe for distribution. 

The submerged structure/pipeline GIS-layer from Task 2 was directly provided to the regional 

TGLO stakeholder (Ms. Amy Nunez) as well as shared directly with TGLO headquarters in 

Austin, TX. 

 

Lidar-derived DEMs, DSMs, Polygon Shapefiles of Rookery Islands (Task 3 and 4) 

These data are hosted on the Harte Research Institute for Gulf of Mexico Studies’ GOMA portal 

and searchable by using a key word such as “Laguna Madre” (see image below). 

 

Link to GOMA portal: 

http://gomaportal.org/geoportal/ 

 

Direct links to download the data 

SHP - ftp://gomaftp.tamucc.edu/Texas/bird_rookeries_monitoring_tamucc_2016.zip 

DEMs - ftp://gomaftp.tamucc.edu/Texas/rookery_island_monitoring_1m_dem_tamucc_2015.zip 

DSMs - ftp://gomaftp.tamucc.edu/Texas/rookery_island_monitoring_1m_dsm_tamucc_2015.zip 

http://gomaportal.org/geoportal/
ftp://gomaftp.tamucc.edu/Texas/bird_rookeries_monitoring_tamucc_2016.zip
ftp://gomaftp.tamucc.edu/Texas/rookery_island_monitoring_1m_dem_tamucc_2015.zip
ftp://gomaftp.tamucc.edu/Texas/rookery_island_monitoring_1m_dsm_tamucc_2015.zip
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Rookery Island Sea Level Rise Vulnerability Maps (Task 5) 

These maps are shared as PDFs downloadable from a website created and hosted by the Conrad 

Blucher Institute at TAMUC-CC for this project. Here is a link to the website (see image below): 

http://www.cbi.tamucc.edu/rookeryslr/ 

http://www.cbi.tamucc.edu/rookeryslr/
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Appendix E. Conference Presentations and Publications 
 

The following lists student technical conference presentations and publications resulting from this project: 

 

 M. Schwind and M.J. Starek, High-resolution Lidar Observations of Rookery Islands in the Upper 

Laguna Madre to Define a Monitoring Benchmark, American Society of Photogrammetry and 

Remote Sensing (ASPRS), Imaging & Geospatial Technology Forum, Fort Worth, TX April 11-15, 

2016. 

  
 

 B. Nazeri and M.J. Starek, Comparison of Aerial Surveying Techniques for Mapping Submerged 

Structures in Shallow Coastal Water, American Society of Photogrammetry and Remote Sensing 

(ASPRS), Imaging & Geospatial Technology Forum, Fort Worth, TX April 11-15, 2016. 

 
 

 B. Nazeri and M.J. Starek, Comparison of Aerial Surveying Techniques for Mapping Submerged 

Structures in Shallow Coastal Water, ESRI Petroleum and Gas GIS Conference, Houston, TX 

April 26-28, 2016. 
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 B. Nazeri, under the direction of M.J. Starek, Comparison of Airborne Surveying Techniques for 

Mapping Submerged Objects in Shallow Water, Master’s Thesis in Geospatial Surveying 

Engineering at Texas A&M University-Corpus Christi, 2016. 

 

 


