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1. EXECUTIVE SUMMARY

This study underscores the essential role of an interdisciplinary approach in tackling the
hydrological and ecological challenges facing the Texas Gulf Coast—insights that have direct
implications for coastal management. By integrating groundwater monitoring, sediment analysis,
microbial source tracking (MST), radium isotope analysis, and predictive modeling, we are able
to illuminate the complex interactions between regional hydrological systems and localized
coastal dynamics. A significant conclusion from our research is the impact of upstream
streamflow on groundwater recharge. This establishes a vital link between mainland watersheds
and the water tables of barrier islands. Seasonal peaks, particularly during winter and spring, lead
to increased water table levels, heightening the risk of flooding on these islands and affecting
both human populations and natural ecosystems. This interconnection highlights the urgent need
for coordinated management strategies that consider upstream water flow and its broader effects
on coastal systems.

Flooding of the water table on barrier islands is most pronounced in late winter and early
spring, times when both rainfall and upstream contributions are at their highest. In sandy,
permeable areas, these shallow water tables significantly increase the potential for flooding,
resulting in contamination risks from failing septic systems and sewage backflow. During such
events, fecal indicator bacteria, which can originate from both human and canine sources, may
be transported into nearshore waters, creating serious public health risks and compromising
recreational safety. Coastal managers face the challenge of monitoring these conditions, as
elevated levels of bacteria necessitate public advisories to protect beachgoers. Moreover, nutrient
inflows from failing septic systems contribute to eutrophication, potentially leading to harmful
algal blooms and the degradation of coastal ecosystems. Our findings emphasize the critical need
for robust monitoring frameworks that can effectively capture the dynamic nature of water table
fluctuations and associated microbial contamination.

In addition, this study sheds light on the transport and ecological effects of nutrients like
nitrogen and phosphorus, which are often associated with sewage and septic system failures
during periods of water table flooding. Elevated nutrient concentrations can destabilize marine
habitats, fueling algal blooms, depleting oxygen levels, and disrupting aquatic food webs.
Coastal areas with consistently shallow water tables are particularly susceptible, acting as
conduits for the transport of nutrients and contaminants. Our use of radium isotopes as tracers for
submarine groundwater discharge (SGD) has identified hotspots of nutrient-rich groundwater
discharge, coinciding with times of high water table levels and flooding. These processes further
highlight the interconnectedness of coastal water quality with regional hydrology and
infrastructure resilience. For coastal managers, understanding these patterns is vital to designing
effective interventions that safeguard both recreational and ecological resources.

Ultimately, this research outlines tangible pathways for coastal managers to minimize
these risks and bolster resilience. The predictive modeling tools developed during this study offer
valuable insights for forecasting water table behavior and identifying high-risk periods for
flooding and microbial contamination. Such tools facilitate the implementation of early warning
systems, enabling managers to issue timely advisories and proactive strategies. Additionally, our
findings advocate for improvements in septic systems and sewage infrastructure in vulnerable
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regions, coupled with targeted land-use policies aimed at reducing nutrient and contaminant
inputs. By integrating upstream hydrological management with localized coastal interventions,
this study promotes a holistic approach to addressing the intertwined challenges of public health
and ecological degradation, ensuring sustainable management of Gulf Coast resources amid
ongoing climate and development pressures.
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2. STUDY AREA

This study focuses on the dynamic barrier island systems and adjacent coastal
environments of Galveston, Matagorda, and Brazoria Counties along the Texas Gulf Coast
(Figure 2.1). These regions, shaped by dynamic geological processes, support diverse
ecosystems and play a critical role in protecting inland areas from storm surges while serving as
hubs for tourism, recreation, and fishing industries. The Texas Gulf Coast, with its 3,359 miles of
shoreline, features extensive barrier islands, bays, tidal rivers, and creeks that have been heavily
influenced by natural and anthropogenic factors over time (NOAA, 2020). Barrier islands, which
constitute about 10% of Earth’s continental shorelines, are significant landforms along the Texas
coast. The Texas barrier islands form a chain of long, sandy islands that separate the coastal bays
from the Gulf of Mexico, protecting these bays from severe waves and currents. Galveston
Island, 43 kilometers long, is associated with the Trinity-San Jacinto Estuary, while Follet’s
Island, 21 kilometers long, is associated with the Christmas Bay Estuary. Sargent Beach and
Matagorda Beach, located on the Matagorda Peninsula, shield Matagorda and East Matagorda
Bays. The Galveston Coast Guard Station monitors weather conditions, reporting that the wet
season is from June to September (highest rainfall in September: 124.5 mm), and the dry season
is from October to May (driest month: March, 81.3 mm). These islands, comprised primarily of
fine sands, are prone to flooding, with land use dominated by industry or recreational housing
(Figure 2.2Error! Reference source not found.). The lithology of Galveston, Matagorda, and
Brazoria Counties highlights the interplay between high-energy barrier island environments and
low-energy estuarine, lagoonal, and marsh systems. Barrier islands are predominantly composed
of fine- to medium-grained sands deposited and shaped by wave and tidal forces. Meanwhile,
back-barrier areas comprise organic-rich silty clays formed in tidal wetlands, transitioning inland
to coarser clay, sand, and gravel deposits in older terraces and river systems. Galveston County
includes Galveston Island and the Bolivar Peninsula, dominated by Holocene barrier island
deposits of well-sorted, fine- to medium-grained sands formed by wave and tidal processes.
Behind the barrier islands lie back-barrier environments with lagoonal and marsh deposits
composed of silty clays rich in organic content, reflecting low-energy tidal settings. Galveston
Bay, the largest estuary in Texas, plays a vital ecological role but faces challenges such as
urbanization and industrial pollution, particularly in areas like the Houston Ship Channel and
Clear Lake (Ward and Armstrong, 1992).

Matagorda County features the Matagorda Peninsula, a prominent barrier island system
protecting the expansive Matagorda Bay estuary from Gulf storm activity. The peninsula’s
sediments are dominated by fine sands deposited by high-energy waves and wind. At the same
time, the adjacent bay contains mud, fine sand, and shell fragments characteristic of low-energy
estuarine environments. Freshwater inflows from the Tres Palacios Creek watershed are critical
to Matagorda Bay’s ecological balance but have been identified as a source of E. coli
contamination from septic systems, agricultural runoff, and wildlife waste (TCEQ, 2018).
Brazoria County’s coastal environment is heavily influenced by the Brazos River, which has
deposited sand, silt, and clay in its floodplain and deltaic systems. Coastal areas feature
prominent sand layers, while marshes and low-lying plains contain finer clay and mud deposits
typical of low-energy environments. However, these regions face challenges such as moderate
salinity levels and periodic flooding, impacting both ecosystems and land management practices
(Texas Geological Survey, 2022).

Hydrologically, the region interacts with significant groundwater systems, including the
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Chicot and Evangeline aquifers. The Chicot Aquifer, composed of unconsolidated sands and silts
with interbedded clay layers, reflects fluvial and deltaic processes. At the same time, the deeper
Evangeline Aquifer transitions to marine-origin finer-grained deposits, indicative of historical
sea-level changes. These aquifers are vital resources for the coastal plain but face challenges
from salinity intrusion, over-extraction, and surface contamination (Texas Geological Survey,
2022). Water quality concerns arise from natural processes and human activities, such as nutrient
loading, bacterial contamination, and urban runoff. For example, in Galveston Bay, urban and
industrial activities have increased nutrient and bacterial pollution, impacting marine habitats and
public health. In Matagorda Bay, agricultural runoff and waste discharges alter nutrient and
contaminant concentrations. In Brazoria County, bacterial contamination is associated with septic
system failures, industrial activities, and urbanization (Powers et al., 2021).

This research addresses these critical water quality and hydrological challenges through
field monitoring, modeling studies, and machine-learning approaches. Objectives include
determining chemical concentrations in groundwater and surface water, identifying drivers of
bacterial and nutrient contamination, and assessing nutrient and bacterial transport between the
Gulf of Mexico and surrounding watersheds. The research will also evaluate groundwater
dynamics, which play a significant role in exacerbating contamination linked to failing septic
systems.
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3. TASK 1: GROUNDWATER-SEAWATER INTERACTION ASSESSMENT
Prepared by Roya Narimani, Ph.D., Dorina Murgulet, Ph.D., Cody Lopez, and Joy Brown

3.1. Executive Summary

This study examines groundwater dynamics across coastal areas of the Texas barrier
islands, focusing on four distinct regions between Quintana Park and the Heritage Preserve. Key
findings highlight the spatial and seasonal variability in hydrology, influenced by sediment
composition, recharge events, and tidal forcing. Coastal areas exhibit permeable sediments that
facilitate rapid groundwater flow and discharge, while inland areas have finer sediments that
reduce permeability. Seasonal depth-to-water (DTW) trends reveal higher flooding risks during
late winter and early spring in coastal areas, with DTW approaching or exceeding the ground
surface, particularly in regions closer to the Gulf of Mexico. Inland regions consistently show
deeper DTW values, reducing their vulnerability to flooding. Submarine groundwater discharge
(SGD) rates are significantly higher in coastal regions during cooler months due to rainfall-
driven recharge and aquifer flushing, while warmer months see seawater intrusion and reduced
SGD rates. Predictive modeling, achieving high accuracy (R? > 0.93), identifies streamflow,
rainfall, and soil moisture as key drivers of groundwater fluctuations. These insights emphasize
the interconnected dynamics of groundwater behavior, SGD, and infrastructure vulnerability,
providing a foundation for adaptive coastal resource management strategies, flood risk
mitigation, and sustainable water resource planning.

3.2. Background

Groundwater is critical in coastal ecosystems as a pathway for nutrient and contaminant
transport via submarine groundwater discharge (SGD). SGD contributes significantly to coastal
nutrient loading, delivering solutes such as nitrate, ammonium, and dissolved organic carbon,
which can exacerbate eutrophication and algal blooms (Knee et al., 2011; Bianchi et al., 2014).
This process, often driven by anthropogenic activities, introduces pollutants from urban
development, agriculture, and septic systems, affecting the ecological and economic stability of
coastal regions (Burnett et al., 2003; Bianchi et al., 2014). Radon-222 and radium isotopes are
essential natural tracers for detecting and quantifying groundwater contributions to coastal
contamination. Radon-222, with its short half-life, is a reliable indicator of recent SGD, marking
areas of active discharge (Burnett et al., 2003; Knee et al., 2011). Radium isotopes, on the other
hand, provide a longer-term perspective on interactions between fresh and saline water, mapping
the pathways of contaminants from land-based sources to coastal waters (Burnett et al., 2003;
Moore, 1996). In Texas coastal bays, seasonal and spatial variations in SGD rates have been
linked to changes in nutrient concentrations, particularly ammonium and nitrate, which are key
indicators of septic system leachate and agricultural runoff (Murgulet et al., 2016).

In environments where surface water inputs are not a substantial part of the water budget
to coastal waters, SGD emerges as a primary nutrient source, particularly through the release of
nutrients like nitrate and ammonium, which are often linked to septic system leachate,
agricultural runoff, and decaying organic matter (Hu et al., 2006; Kroeger and Casey, 2007). The
biogeochemical processing within subterranean estuaries (STEs) further modifies these solutes,
resulting in SGD with unique chemical signatures and significant ammonium fluxes under
anoxic conditions (Charette and Sholkovitz, 2006; Roy et al., 2010). Such nutrient-rich
discharges can stimulate algal productivity or contribute to harmful algal blooms (HABs) in
coastal ecosystems (Kroeger et al., 2007; Santos et al., 2012). SGD is also a significant source of
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bacterial pathogens such as E. coli, which pose risks to public health and marine ecosystems
(EPA, 2020; Smith et al., 2020). Stable isotopes of nitrogen and oxygen in nitrate further
elucidate the transformations and origins of nutrients, helping to trace contamination pathways
and identify pollution sources (Xue et al., 2009). This integration of groundwater tracers with
bacterial and nutrient source tracking provides a detailed understanding of how SGD contributes
to nutrient and pathogen loading in coastal environments.

This research underscores the importance of integrating radium and radon tracers with
bacteriological data to analyze groundwater-surface water interactions. By investigating SGD's
role in transporting nutrients and contaminants such as E. coli to Texas Gulf Coast estuaries, this
study provides critical insights into the management of water quality in vulnerable coastal
regions. These findings directly affect public health, ecosystem functions, and sustainable
watershed management (Smith et al., 2020; Texas Water Resources Institute, 2017). By
identifying and addressing the sources of bacterial and nutrient pollution, this research supports
the development of remediation strategies that enhance water quality, protect biodiversity, and
promote resilience within coastal communities (Jones et al., 2019; TCEQ, 2018).

3.3. Methods

3.3.1. Hydroparameter and water sample collection

Groundwater, porewater, and surface water samples were collected monthly, starting with
November 2021 to May 2023. Field parameters, which were collected before sampling,
including salinity, dissolved oxygen (DO), pH, and specific conductivity, were measured using a
multi-probe Y SI ProDSS. Groundwater was sampled at the wellhead using a peristaltic pump
after purging three well volumes and after field parameters stabilized. Surface water samples
were collected approximately one foot below the air-water interface in knee-depth waters along
the shoreline (TCEQ 2012). Porewater was sampled at the same locations with surface water at
approximately 0.2 m below the sediment-water interface with a push-piezometer sampler
attached to a peristaltic pump after stabilization of field parameters (RCRA SOP 2009). All water
samples were collected in 1 L HPDE bottles previously acid-washed with 20% hydrochloride
acid, rinsed with 18.2 MQ cm water, and finally triple-rinsed with sample water, were placed in
ice until transported back to the lab and filtered through 0.2 pm pore-sized polycarbonate
membranes within 24-48 hours. Samples were then frozen until analysis.

3.3.2. Submarine groundwater discharge estimates
SGD rates were calculated using Darcy’s law and radium activities, as described below.

3.3.2.1. Darcy discharge rate estimates

Darcy’s law estimates of groundwater velocity (v, Darcy’s Law formulas below) of
“local” shallow, brackish to hypersaline SGD were derived using water level data from the
groundwater monitoring wells. Hydraulic conductivity data was estimated from a series of
well/sediment core data collected at the installation of each monitoring site. This field analysis
provided knowledge about how grain size, sorting, composition, and porosity changed with
depth. With these categories and an idea of where the water table lies, base hydraulic
conductivity values ranged between 107 to 10”7 cm/s, as dependent on the sedimentary make-up
of the conductive saturated layer using standard values from Fetter (2001).
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Darcy’s Law analysis was performed using the true or seepage velocity formula: v = K-i-/n;
where K is the hydraulic conductivity, i is the hydraulic gradient, and n is effective porosity. The
distance used to calculate the hydraulic gradient is the distance between the monitoring wells and
the water line along the shoreline. The tidal activity was subtracted from the groundwater level
at each well to get a true idea of the water’s change in head. An effective porosity ranging from
0.05 to 0.15 was used for velocity estimates. The saltwater heads of the groundwater and
seawater levels were converted to freshwater heads using estimated water densities based on the
temperature and salinity of the water.

3.3.2.2. Radium mass balance and SGD rates

Surface water samples for radium (radium-224 [***Ra], radium-226 [*2°Ra]) analysis were
collected in 20L jugs (approximately 19 to 21 L total volume) at each of the sampling sites by
wading into the water and rinsing and filling the bottle in the wave zone. Samples from the
monitoring wells and porewaters were collected in 10L collapsable cubes. The radium was
extracted by processing the samples through ~15g manganese dioxide, MnO,, impregnated
acrylic fibers at a flow rate <1 L-min"! (Kim, Burnett et al. 2001, Dimova, Burnett et al. 2007).
The Mn-fibers were then rinsed thoroughly with Ra-free water to eliminate any salts or
particulates and then pressed to a water-to-fiber ratio of 0.3-1g (i.e., 20-30g wet weight) (Sun and
Torgersen 1998). The fibers were tested for ?*Ra (half-life: 3.6 days) on a Radium Delayed
Coincidence Counter (RaDeCC). Activities of ?*Ra were measured within three days of
collection, given the short half-life (Moore 2006). After the short-lived isotope measurements,
the fibers were flushed with nitrogen gas and sealed for >21 days to reach secular equilibrium
before measuring the 2*°Ra (half-life: 1,600 years) on a RAD-7 with measurements corrected to a
calibration curve determined from 5 standards (Moore 1996).

Following Null et al. (2014), a mass balance for each Ra isotope was developed using
Moore’s (1996) method. Brackish SGD fluxes were estimated by assessing excess Ra activities
within the coastal zone up to approximately 50 m from the water line. The area was segmented
into four areas, as shown in Figure 2.1. Our Ra mass balance model quantifies only brackish SGD
into the coastal zone, excluding freshwater discharge due to Ra’s salinity dependence (Webster
Hancock and Murray, 1995; Null et al., 2014). The selected endmembers for the box model
calculation were the average Ra activities from porewater and monitoring wells at each
corresponding surface water location of the four regions. Fluxes of SGD to the gulf (D) were
calculated with a modified version of Eq. (1) from Moore (1996):

D(m3 . d_l) — (Vbox)(Abox_Aoffshore) Eq 1

‘I.'XAgW

where V,,, 1s the volume of the nearshore segment (e.g., the area from sites 2 to 5, the area
from sites 7 to 14, the area for sites 15 to 16, the area for sites 18 to 19: 2.0 x 10°, 1.8 x 10%, 5.5 x
10° and 2.9 x 10° m? respectively), 1 is the area’s water flushing time (Area for sites 2 to 5: X= 5.3
and 25.5; Area for sites 7 to 14: X=4.5 and 25.5; Area for sites 15 to 16: X= 5.5 and 16.5; Area for
sites 18 to 19: X= 5.2 and 10.6 days for >*Ra and ?*°Ra based calculations respectively), Asox is the
excess Ra activity in the box area, offshore Ra (A4finore), and groundwater or porewater endmember
Ra. Volumetric rates were normalized to each respective area (Area for sites 2 to 5: 1.0 x 10% m?,
Area for sites 7 to 14: 9.2 x 10° m?, Area for sites 15 to 16: 2.8 x 10° m?, Area for sites 18 to 19:
1.5 x 10° m?) to derive advective SGD rates (m-d™!). This step is necessary to accurately determine
the discharge rate per unit area and compare different regions of the study area, especially when
comparing the regions of different sizes.
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3.3.3. Groundwater level prediction: data preparation and analysis

3.3.3.1. Data preparation. acquisition and sampling

In this study, two distinct categories of datasets were used: Data obtained from online
repositories and field samples collected from monitoring wells. Each dataset type plays a critical
role in the overall analysis and is described in detail in the subsequent sections. The collected
data encompasses continuous, observational measurements, while the sampled data refers to
targeted, point-in-time observations. These two categories provide complementary insights, and
their distinct characteristics are essential for developing a comprehensive understanding of the
phenomena under investigation. Detailed explanations of the methodologies and data handling
for both categories are provided in the following sections.

Data acquisition

The datasets utilized in this study comprised key hydrological and environmental
variables: wind speed, wind direction, wind gust, water temperature, air temperature, tide level,
rainfall, streamflow, Terrestrial water storage, baseflow runoff, storm surface runoff, root zone
soil moisture, soil moisture content, GPM_3IMERGHHI, MRMS rainfall, and sea level pressure.
These variables were downloaded across multiple locations (Table 3.1) to assess their
relationships with bacteria levels and nutrient concentrations. By analyzing these environmental
and hydrological factors, the study aims to identify potential correlations and better understand
the drivers influencing bacterial and nutrient dynamics in the given areas.

Table 3.1. Environmental and hydrological variables with temporal resolutions and data sources.

Variables Temporal Download Link

Resolution
Streamflow Hourly https://waterdata.usgs.gov/
Tide level Hourly https://tidesandcurrents.noaa.gov/
GPM_3IMERGHHI 30 minutes https://giovanni.gsfc.nasa.gov/giovanni/
Wind speed Hourly https://tidesandcurrents.noaa.gov/
Wind direction
Wind gust
Air temperature
Precipitation Daily https://www.ncdc.noaa.gov/
Terrestrial water storage Daily https://giovanni.gsfc.nasa.gov/giovanni/
Baseflow runoff Daily https://giovanni.gsfc.nasa.gov/giovanni/
Storm surface runoff Hourly https://giovanni.gsfc.nasa.gov/giovanni/
Root zone soil moisture Hourly https://giovanni.gsfc.nasa.gov/giovanni/
Soil moisture content Hourly https://giovanni.gsfc.nasa.gov/giovanni/
MRMS rainfall Hourly https://mtarchive.geol.iastate.edu/
Sea level pressure Hourly https://giovanni.gsfc.nasa.gov/giovanni/

Sampled data: data preparation and laboratory analysis: processing and evaluation

Twelve monitoring wells (Figure 3.1) were installed along the shoreline and at the
bay/river outlet to collect groundwater samples, pore water, and surface water samples. Between
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November 2021 and May 2023, 843 samples were collected. Table 3.2 presents the number of
samples collected each month for surface, pore, and groundwater, along with the total samples
for that month. Each well was equipped with a pressure transducer that continuously recorded

the water table elevation every 15 minutes.

Table 3.2. Monthly water sample data (2021-2023).

Year Month Surface Pore Ground | Total Samples
2021 November 16 11 12 39
2021 December 18 13 12 43
2022 January 19 13 12 44
2022 February 25 16 14 55
2022 March 19 15 12 46
2022 April 19 11 12 42
2022 May 18 10 12 40
2022 June 19 12 12 43
2022 July 19 12 12 43
2022 August 18 12 12 42
2022 September 19 12 12 43
2022 October 19 15 12 46
2022 November 19 13 12 44
2022 December 19 14 12 45
2023 January 19 15 12 46
2023 February 19 15 12 46
2023 March 19 15 12 46
2023 April 19 15 12 46
2023 May 18 15 11 44
Total 360 254 229 843
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Figure 3.1. Photos of selected monitoring wells for the research.
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3.3.3.2. Modeling framework: development and validation

Figure 3.2 outlines the systematic framework for groundwater level prediction, focusing
on data preprocessing, model development, and validation. After multi-source data retrieval, the
preprocessing phase ensures data quality and consistency through integration, noise removal,
outlier correction, and standardization. Feature engineering further enhances the dataset by
extracting meaningful attributes to improve model performance. The model development phase
employs the XGBoost algorithm, chosen for its computational efficiency and ability to handle
structured data. Optimal hyperparameters are defined, and the model is trained using K-Fold
Cross-Validation to improve generalizability and mitigate overfitting. Hyperparameter tuning
fine-tunes the balance between bias and variance, while the iterative training, validation, and
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testing process ensure robust model refinement. Finally, the compiled model undergoes
performance evaluation, where prediction accuracy is measured using Root Mean Square Error
(RMSE), R?, and Mean Absolute Error (MAE). This rigorous process identifies the optimal
model, delivering reliable groundwater level predictions for effective resource management.
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Figure 3.2. Flow chart of the research methodology.

3.3.3.2.1. Data preprocessing

After the dataset is collected, a thorough cleaning process is conducted to ensure quality
and relevance for modeling. Missing values are addressed using K-Nearest Neighbors (KNN)
imputation, noisy data is mitigated through filtering or transformations, and irrelevant images
and datasets unsuitable for the model are removed. This systematic approach enhances data
integrity and prepares it for the modeling phase. Figure 3.3 illustrates a summary of the
preprocessing steps undertaken.
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Figure 3.3. Key steps in data preprocessing.

3.3.3.2.2. Variational Auto-Encoder (VAE) and Principal Component Analysis (PCA)

In this study, two distinct approaches were utilized to explore relationships within the
chemical dataset: Principal Component Analysis (PCA), a statistical technique for uncovering
underlying patterns and reducing dimensionality, and Variational Auto-Encoder (VAE), a deep
learning-based method for identifying complex, non-linear interactions among the variables.
However, PCA was insufficient for capturing the intricate relationships in the dataset, as it is a
traditional technique that may not fully account for the complexity of water chemistry.

Variational Auto-Encoder (VAE) is an artificial neural network architecture introduced by
Diederik P. Kingma and Max Welling (Kingma and Welling, 2014), and it is an extension of the
traditional autoencoder that adds a probabilistic approach to the learning process. In a Variational
Autoencoder (VAE), the encoder maps the input data into a probabilistic distribution (typically
Gaussian) instead of a fixed representation, enabling a more adaptable data representation.
Rather than learning a specific code, the VAE models a distribution over the latent variables,
allowing for sampling from this distribution during the decoding process. The decoder then
reconstructs the data from this latent space, attempting to generate output that closely resembles
the original input but using the probabilistic representation. Below are the results of applying
deep learning techniques to the chemistry dataset using the original and transformed data.

3.3.3.2.3. Transformation techniques

The scale of bacteria levels in the dataset varies significantly, with some days showing
extremely high values. To address this, logarithmic and Box-Cox transformations were applied to
normalize the data and mitigate the impact of outliers. These transformations enhanced the
correlation between the bacteria data and the chemistry dataset, making the relationships more
interpretable and reliable for analysis. In addition, environmental and hydrological factors were
incorporated into the analysis by employing various data transformation techniques, such as
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lagging data, normalization, cumulative sums, differencing, logarithmic transformations,
smoothing techniques, polynomial features, categorical encoding, and feature selection. These
methods helped refine the dataset and improve the robustness of the modeling approach.

Modeling bacteria levels based on wind direction is challenging because wind direction is
a physical phenomenon influenced by meteorological conditions. In contrast, bacteria levels are
typically driven by environmental factors like water quality, temperature, or contamination
sources. However, relationships might exist indirectly, such as wind patterns influencing bacteria
transport or dispersal. To address this, wind direction was transformed to account for its circular
nature, incorporating additional axes to align with local environmental patterns (Wolfe et al.,
2023). Figure 3.4 illustrates the wind speed and wind direction rose diagrams for the seven
stations utilized in this study. Each diagram provides insight into the dominant wind directions
and their corresponding speeds at each location.

8772471 8771972 8771486

8771450 ’ 8771341

Figure 3.4. Wind Direction Rose Diagram for Seven Stations: Visual representation of wind
direction frequencies across all stations. Each diagram highlights the dominant wind patterns,
with the length of each bar indicating the proportion of time the wind blew from a particular
direction, aiding in understanding regional wind trends and their environmental impact.

3.3.3.2.4. GIS-Ensemble model and validation

A machine learning model was developed in this research to predict groundwater
elevations by integrating transformed environmental and hydrological factors. Among the
various machine learning and deep learning techniques tested—such as Multilayer Perceptron
(MLP), Random Forest, and Long Short-Term Memory (LSTM)—the XGBoost model
demonstrated superior performance. XGBoost model, a gradient boosting machine learning
technique known for its high performance in predictive tasks. The model is trained using the
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preprocessed data, along with hourly groundwater levels collected from 11 monitoring wells
between November 2021 and May 2023. Geographic Information System (GIS) tools were used
to extract and organize data based on specific watersheds, enabling a more precise spatial
analysis of groundwater dynamics. Hyperparameters are defined and optimized using K-fold
cross-validation to improve model accuracy. The model is then trained on the dataset, followed
by hyperparameter tuning to refine its performance. The final trained model is evaluated using
performance metrics like RMSE, MAE, and R? to assess its predictive capability for groundwater
levels.

3.4. Results

3.4.1 Sediment core characterization

The following provides a detailed description of the sediment cores, and the observed
layered heterogeneity based on depth intervals, sediment type, and grain size, as represented in
Figure 3.5 below. A summary of the sediment core analyses by well is as follows:

Well #1: The sediment core is dominantly characterized by clay with silt and sand lenses
interspersed at various depths. Between 400 and 600 cm, the layers consist of compacted clay
with minimal moisture, indicative of drier, consolidated material. Deeper layers transition to
wetter conditions, with intervals of sandy silt and clay-silt mixtures, reflecting a finer-grained
sediment composition.

Well #2: This sediment core consists primarily of clay-silt mixtures, with some organic
content observed near the surface. Layers of sandy clay appear at various depths, interbedded
with finer silts. Sediments are predominantly wet, with intervals exhibiting varying plasticity that
correlates to changes in clay content and compaction.

Wells #3 and #4: The sediment cores display complex layering of fine silt, clay, and
sandy textures. Notably, the sediments at these locations contain distinct intervals of sandy silt
interbedded with clay layers. Colors range from gray and olive gray to brown, suggesting organic
material and mineral variations. Sediments maintain wet conditions throughout, indicating
consistent water retention.

Well #5: This sediment core exhibits alternating layers of sandy silt, clay, and sand, with
surface intervals containing sand, silt, and plant roots. Deeper sections are dominated by fine
clay and clay-sand mixtures, which appear more compact and drier. The varying textures suggest
episodic shifts in depositional energy.

Wells #7 and #8: These wells display significant variability:

o Well #7: The upper layers are predominantly gravel and sand, transitioning to fine clay
and gravelly silt at depth. Sediment colors range from yellow-orange to olive-gray,
reflecting mineralogical changes. Moisture levels vary from slightly moist to saturated,
with deeper clay layers indicating high plasticity.

o Well #8: This core contains sandy clay, with interbedded clay and silt layers, maintaining
a generally wet condition. Some intervals include sand and gravel, indicative of coarser-
grained depositional events.

25



Well #9: This core is primarily comprised of sand. Deeper intervals exhibit higher sand
content and maintain wet, loose conditions. Sediment colors range from white-gray to olive-gray,
suggesting variations in mineral composition.
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Figure 3.5. Soil texture depth profile by well. Note the persistence of sands for most of the
sedimentary facies except for well #1, which is located inland and not included in the analyses.

Well #10: The sediment core consists predominantly of fine silt and clay, with
interbedded sand and gravel lenses occurring sporadically. Sediments are predominantly wet,
with certain intervals of sandy clay reflecting higher depositional energy. Deeper sections show
clay dominance, with high plasticity observed in finer-grained zones.iWell #11: At this location,
the sediment layers of fine clay mixed with silt and sand, with a higher organic content near the
surface. The moisture levels fluctuate between ilightly plastic and saturated, with deeper sections
containing loose, wet silts. This variability suggests changes in sediment deposition and
compaction.

Wells #13 and #14: At these locations, sediments exhibit alternating fine sand, silt, and
clay layers. Shallow intervals (0—100 cm) are dominated by fine silt and clay mixtures,
transitioning to sandy clay at depth. Moisture levels range from dry to saturated, with certain
intervals showing varied plasticity and silt-dominated textures.

These sediment cores, collected from coastal and near-coastal environments, highlight a
diverse range of sedimentological features influenced by hydrological processes, depositional
history, and depth-related compaction. The sediment textures—ranging from clay and silt to
sand, gravel, and plant roots—reflect variability in depositional energy and water table dynamics.

3.4.2. Data analysis: statistical summary, correlations, and distributions of
groundwater elevations

3.4.2.1. Statistical summary

The statistical summaries for the variables of interest, categorized by parameter, are
presented in the tables below. Table 3.3, Table 3.4, Table 3.5 provide detailed statistical
descriptions for surface, pore, and groundwater samples, respectively.
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Table 3.3. Statistical summary of water quality variables in groundwater samples (Nov 2021-

May 2023).
Column Mean Min Max Variance Standard Coefficient of Variation
Deviation (CVv)
DO 3.1 0.2 8.5 4.3 2.1 66.5
Sal 3.0 0.3 14.3 16.0 4.0 132.3
pH 7.1 5.4 8.6 0.2 0.5 6.7
ORP -18.0 -205.8 272.7 12293.4 110.9 -615.7
Rn 3404.4 | 0.0 30141.1 21821125.6 4671.3 137.2
Ra223 46.8 -0.8 577.1 5390.9 73.4 156.7
Ra224 1108.8 | 22.7 7813.2 1554661.6 1246.9 112.5
Ra226 254.2 69.8 878.0 34166.0 184.8 72.7

Table 3.4. Statistical summary of water quality variables in porewater samples (Nov 2021-May

2023).
Column Mean Min Max Variance Standard Coefficient of Variation
Deviation (CV)
DO 2.9 0.5 10.2 2.5 1.6 55.6
Sal 26.7 0.9 38.1 35.4 5.9 22.3
pH 7.6 6.4 8.6 0.1 0.4 4.7
ORP 40.4 -331.0 317.2 11696.1 108.1 267.9
Rn 1420.2 0.0 6646.6 1065431.3 1032.2 72.7
Ra223 165.7 0.0 1705.9 25791.5 160.6 96.9
Ra224 3046.8 23.2 13037.9 3909267.3 1977.2 64.9
Ra226 491.9 147.0 1887.0 84489.6 290.7 59.1

Table 3.5. Statistical summary of water quality variables in surface water samples (Nov 2021-

May 2023).
Column Mean Min Max Variance Standard Coefficient of Variation (CV)
Deviation
DO 7.6 1.9 12.3 1.6 1.3 16.8
Sal 26.4 0.6 36.0 32.0 5.7 21.4
pH 8.0 7.0 8.9 0.1 0.3 3.4
ORP 92.9 -123.5 289.2 5369.9 73.3 78.9
Rn 29.0 0.0 644.2 3211.7 56.7 195.5
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Ra223 36.9 0.0 660.6 1939.9 44.0 1194

Ra224 546.3 59.2 74774 323877.3 569.1 104.2

Ra226 250.1 43.9 945.5 24673.0 157.1 62.8

The raw groundwater level data were carefully cleaned to remove noise and
inconsistencies, ensuring reliable input for analysis. This step included filtering out errors to
produce a high-quality dataset. The heatmap displays the correlation coefficients between
groundwater levels across various wells. As shown in Figure 3.6a, Wells 3 and 5 exhibit a high
correlation (~0.97), suggesting similar patterns in their groundwater level fluctuations, while
Wells 2 and 9 show a lower correlation (~0.42), indicating differences in their behavior. Figure
3.6b illustrates the data trends over time for the selected wells, highlighting variations that likely
reflect a combination of local environmental and hydrological factors, as well as differences in
slope, elevation, and watershed characteristics. These variations influence groundwater elevation
changes at different locations, which may respond similarly or differently depending on the
location. This affects the observed fluctuation patterns across wells, reflecting the unique
responses to hydrological processes such as flow and recharge.
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Figure 3.6. (a) Heatmap of correlation coefficients between groundwater levels at different
wells. (b) Line chart showing groundwater level variations over time for the selected wells.

3.4.2.2. Radium activities
Radium-224 activities

Porewater exhibited the highest mean ***Ra activity (3,047 Bg/m?), with a maximum of
13,038 Bg/m? observed at station P14 in May 2023. This peak indicates intense radium
mobilization from sediments, possibly driven by episodic geochemical or hydrological events,
such as increased SGD discharge or sediment disturbances and mobilization due to increases in
salinity within the groundwater-surface water freshwater-seawater interface. The lowest >*Ra
activity in porewater was 23 Bq/m?, recorded in September 2022 at P14, where reduced SGD or
sediment interactions have occurred. Temporal trends in porewater activities showed consistently
high levels, with peaks during May 2023 and July 2022, aligning with seasonal SGD patterns.
Stations P10 and P14 also exhibited substantial variability, with periodic spikes exceeding 6,000
Bg/m®.

Surface water displayed much lower mean activity (547 Bg/m?®), with a maximum of
7,477 Bq/m? recorded in March 2022 at station S5, expected to result from large SGD inputs
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derived from nearby sources. The minimum activity of 59 Bg/m? occurred at S20 in February
2022, indicative of dilution by offshore Gulf waters and/or reduced SGD inputs. Like porewater,
August 2022 was a notable month for elevated surface water activities, particularly at stations
S1, S10, and S17, where radium-enriched groundwater discharges influenced the observed
spikes. Stations S6B and S12, by contrast, maintained relatively stable activities, with levels
ranging between 195 and 225 Bg/m?, showing minimal interaction with groundwater and limited
porewater fluxes.

Groundwater samples showed moderate variability, with a mean ??*Ra activity of 1,071
Bg/m?. The highest activity (7,813 Bg/m?) was recorded at station W9 in November 2021,
potentially linked to deeper aquifer inputs rich in radium. However, long residence times and
increased salinities due to prolonged saltwater intrusion (e.g., high tides) events allow for radium
dissolution from sediments. The lowest *>*Ra activity (23 Bq/m?) was observed at W7 in May
2022, indicating limited radium mobilization or mixing or recent recharge from precipitation.
Darcy’s groundwater discharge rates in this location indicate potential saltwater intrusion, thus
causing dilution of ambient aquifer activities with the depleted seawater. Temporal patterns in
groundwater showed elevated activity during November 2021, February 2022, May 2023, and
August 2022. Station W10 mirrored patterns seen in porewater, with consistent peaks correlating
with SGD pulses during the late summer.

All three sample types showed elevated 2**Ra activity in August 2022, suggesting strong
SGD contributions during the late summer months. Porewater and groundwater exhibited
complementary peaks, indicating that interactions between these systems are substantial. Stations
S5 and P14 displayed significant peaks across surface and porewater, respectively, underscoring
their roles as hotspots for SGD-driven radium mobilization. Station W7 showed similar behavior
for groundwater, particularly in November 2021. Stations S15 and S20 in surface water, W5 in
groundwater, and P4 in porewater maintained relatively consistent >**Ra activity, reflecting
minimal influence from episodic or seasonal variations. All sample types showed a general
pattern of higher activities during summer months (e.g., August 2022 and July 2022) and lower
levels during late winter (e.g., March 2022), emphasizing the seasonal influence on SGD
dynamics and sediment-water interactions.

Radium-223 activities

Activities of ?*Ra are generally much lower than those of ?**Ra, given the lower
abundance of the parent isotope in sediments along the Gulf Coast Aquifer. Thorium-227 is part
of the decay chain of Uranium-235 and is a precursor to ***Ra. This relationship is relevant in
environmental and geochemical studies, as radium isotopes like ***Ra are often used to trace
SGD or to study sediment-water interactions (Moore and Arnold, 1996). Thorium-227 tends to
be particle-reactive and binds to sediment particles. From there, it decays into ?>*Ra, which can
be more mobile in porewater or released into the overlying water column.

Notable spatial and temporal variability in >’Ra activities is observed among porewater,
surface water, and groundwater samples along the coast. Porewater samples showed the highest
mean *?°Ra activity at 168 Bq/m?, with a peak of 1,706 Bq/m? in February 2023 at station P2.
Like 2**Ra, this may reflect strong geochemical interactions and possibly substantial radium
mobilization near the sediment-water interface. Other notable peaks in porewater occurred in
July 2022 (1,042 Bg/m? at P14), suggesting episodic inputs from terrestrial groundwater enriched
in radium.
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Surface water samples exhibited much lower mean activity (37 Bg/m?), with a maximum
of 661 Bg/m? observed in March 2022 at station S5, which stands out compared to increased
nearshore groundwater inputs during the late summer months with associated higher surface
radium. Temporal trends in surface water are generally more stable, but slight elevations in
activity occurred in January 2022 (274 Bg/m? at S6). Moderate variability was observed in
groundwater, with activities ranging from 0.1 Bg/m? (at W4 in December 2022) to a peak of 577
Bg/m? recorded in November 2021 at W9. The November peak corresponds to the time of
increased terrestrial input or mixing dynamics likely linked to seasonal (e.g., late summer-fall)
recharge (see Darcy’s SGD section). Other minor peaks occurred in May 2023 (322 Bg/m? at
W11), aligning with similar trends seen in porewater.

Monthly averages indicate dynamic interactions between groundwater-porewater-surface
water. For instance, porewater activities, which were consistently higher than groundwater and
surface water, are likely a source of radium to surface water and potentially to groundwater at
times of low water table and saltwater intrusion. Porewater had sharp peaks in February 2023
and December 2022, while surface water and groundwater showed their most significant
increases during January 2022 and November 2021, respectively. From these observations, it can
be inferred that porewater is a key reservoir that influences radium dynamics along the barrier
island.

Radium-226 activities

Like *’Ra, the peak *?°Ra activity was 8,411 Bq/m? in a porewater sample, P19, in
October 2022. This significant spike indicates specific localized geochemical conditions that are
facilitating the heightened mobilization of radium from sediments located near the shore, among
which could be input from deeper or more distant groundwater. On the other end of the spectrum,
the lowest 22°Ra activity measured was 42 Bq/m?, captured in surface water at S1 in August
2022. These low levels may result from dilution with Gulf of Mexico offshore waters or
insignificant terrestrial groundwater discharge. High 2*Ra activities were observed in September
and October 2022, with numerous instances exceeding the threshold of 800 Bg/m®. These
frequent spikes may indicate intensified biogeochemical interactions between sediments and
water during these months. Given that 2>Ra does not recoil back into solution as quickly as the
short-liver isotopes described above, the impact of salinity changes is not expected to be a large
contributor to activity changes from month to month. However, high ??°Ra activities could be the
result of both increased SGD from nearby sources (of lower 22°Ra activities) or proportionally
lower terrestrial, more distant groundwater discharge that is generally richer in ?*°Ra. In
groundwater samples, moderate 2>Ra levels were generally detected, with peaks occurring in
October 2022 and February 2023. The highest observation occurred in October 2022 (6,031
Bqg/m?). Surface water activities showed more stable trends overall, with a higher average **’Ra
level in October 2022, similar to groundwater, with a maximum activity of 5,340 Bg/m°.

A downward trend in *?°Ra activity was generally observed during June 2022 and
December 2021 across all sampling site types, suggesting the influence of seasonal or
environmental factors, such as dilution and/or lower groundwater inputs. Levels of 2°Ra above
800 were predominantly recorded in porewater and groundwater. Porewater consistently
exhibited high activities, frequently exceeding 800 Bq/m?, particularly notable in October 2022.
Similar occurrences occurred in groundwater, where levels peaked above 800 in October 2022.
Although surface water exhibited more stable patterns, it also reached a maximum activity of
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5,340 Bg/m?® in October 2022, suggesting terrestrial groundwater inputs as significant sources
during this time.

Observed fluctuations in 2?°Ra levels may result from variable SGD inputs, both in
magnitude and sources, or biogeochemical reactions and magnitudes of recirculation within the
subsurface transition zone between groundwater and surface water. As with the short-lived
radium isotopes, analysis of 2?°Ra also highlights significant temporal and spatial variability in
activities, especially in porewater, indicating substantial nearshore radium dynamics.

3.4.2.3. Measures of dispersion: violin plot

Figure 3.7, Figure 3.8, and Figure 3.9 illustrate the distribution and outliers in the
dataset using violin plots. The width of each violin plot indicates the density of data points at
different values; wider sections signify higher concentrations of data points, while narrower
sections suggest lower density. The height of each violin plot represents the range of the data,
extending from the minimum to the maximum values, which provides an overview of the data's
spread. A taller plot indicates a larger range of values, reflecting greater variability within the
dataset. Together, the width and height of the violin plots provide a comprehensive view of the
data distribution, highlighting where the majority of data points are concentrated and revealing
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any potential outliers.
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Figure 3.7. Violin plot for groundwater parameters.
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3.4.3. Submarine groundwater discharge

3.4.3.1 Darcy’s SGD rates

Results from the Darcy’s Law calculations show that the average SGD rates from area 3
(wells 7 to 14) are higher than those of area 4 (wells 2 to 5). A seasonal trend is more visible in
area 3’s data than area 4, but both data sets match, which is that in the colder months (roughly
September to March), SGD is at its peak but drops low in the warmer months (March to August).
See Figure 3.10,Figure 3.11, Figure 3.12, andFigure 3.13. This seasonal trend is reflected in the
velocity data from individual wells, particularly in area 3. The area near well 7 consistently
displayed the highest groundwater discharge velocities, peaking at 187 cm/d in January 2023 and
162 cm/d in December 2022 (Figure 3.11 and Figure 3.12). These high velocities align with the
peaks in SGD for area 3 during the same months, reinforcing the strong response of this region to
seasonal recharge events. In contrast, during the warmer months, negative velocities were
recorded near well 7 in April 2022, May 2022, and June 2022, indicating seawater intrusion. This
is consistent with the lowest SGD rate for area 3, recorded in May 2022 at -8.5 cm-d™". The
negative SGD rate and velocities reflect the influence of tidal reversals, as seawater levels
exceeded groundwater elevations. Darcy’s Law calculations could only be performed for the area
where wells were available as the groundwater elevations of the porewater are unknown.
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Figure 3.10. Darcy's Law calculated SGD rates using freshwater heads from groundwater and
Gulf of Mexico nearshore water levels. The negative values indicate that when the static
groundwater level was measured in the month, the seawater level was higher, resulting in a
negative/reverse gradient when seawater may intrude the water table aquifer, and negligible
groundwater discharge will occur.
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Figure 3.11. Groundwater discharge rates (velocity rates) over time for all locations
corresponding to the monitoring wells in regions 3 and 4 (See Figure 2.1 for a location map).
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Figure 3.12. Groundwater discharge rates (velocity rates) across all locations corresponding to
the monitoring wells in regions 3 and 4 (See Figure 2.1 for a location map).
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Figure 3.13. Groundwater discharge rates (velocity rates) across months correspond to the
monitoring wells in regions 3 and 4 (See Figure 2.1 for a location map).

The variability in velocities among different wells highlights the differences between
areas 3 and 4. For instance, while area 3 exhibited dynamic responses with high peaks near well
7, area 4 demonstrated more stable velocity patterns. The area near well 3 consistently displayed
velocities between 1 and 3 cm/d, with no reverse gradients recorded, indicating localized aquifer
stability. Similarly, the area near well 10 peaked at 3.5 cm/d, reflecting limited tidal influence
and stable recharge conditions. These patterns correspond to area 4's lower but more consistent
SGD rates, which peaked at 8.0 cm-d™" in January 2023 and reached a minimum of 2.4 cm-d™' in
December 2021. The highest peak for area 4 was 8.0 cm-d ™! in January 2023, the same time that
area 3’s peak of 36.2 cm-d ! was determined. For area 3, a similar peak was also reached in
December 2022 of 31.6 cm-d".

The lowest rate for area 4 was reached in December 2021 with a rate of 2.4 cm-d™!, while
for area 3, the lowest rate was determined to be in May 2022 with a rate of -8.5 cm-d™". This
negative rate from Darcy’s Law indicates that some level of seawater intrusion is likely to have
occurred as the sea level was higher than the groundwater elevation, causing seawater to intrude
into the groundwater. The area near well 2 in area 3 further supports this observation, as reverse
gradients were consistently recorded during November 2021, December 2021, and summer 2022,
with velocities ranging from -1.4 cm/d to -0.6 cm/d. The swampy conditions and frequent
flooding near this well, combined with tidal reversals, create conditions conducive to seawater
intrusion.

Overall, area 4 has more consistent but lower SGD rates over the course of the study,
while area 3 has more variable rates that reach much higher (Figure 3.10) but include times of
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seawater intrusion. The seasonal velocity peaks in wells like 7 (area 3) and 5 highlight the
dynamic aquifer response to recharge events, particularly during colder months when SGD rates
are highest. Conversely, wells in area 4, such as 3 and 10, illustrate stable hydrological
conditions contributing to its lower but steady discharge rates. These findings emphasize the
contrasting hydrodynamic behaviors of the two areas and their influence on SGD (Figure 3.10).

3.4.3.2 Radium-224 SGD rates

Results from the 22*Ra mass balance using the well/shallow groundwater activities as the
source/end member show significant spatial and temporal variability in SGD rates (Figure 3.14).
Shallow groundwater-derived SGD consistently shows the highest rates in region 4, with a peak
of 769 cm/day in March 2022. This extremely high discharge rate could be related to a
hydrological event, such as seasonal aquifer recharge associated with high rain amounts, which is
characteristic of the area in the spring, which elevates water tables and regional groundwater
levels, enhancing groundwater discharge towards the Gulf. Another major peak occurred in June
2022 (653 cm/day), further underscoring the dominance of region 4 in large-scale groundwater
discharge dynamics. Sustained moderate rates were also observed during January 2023 (345
cm/day) and April 2023 (415 cm/day).
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Figure 3.14. Radium-224 derived SGD rates using the shallow groundwater/water table as the
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In region 3, SGD rates were notably lower than in region 4 but still exhibited important
seasonal contributions. The highest rate in this region was recorded in January 2022 (198
cm/day), followed by smaller peaks in March 2022 (93 cm/day) and June 2022 (108 cm/day).
These rates indicate sporadic contributions to SGD from region 3, with lower magnitudes than
region 4. Groundwater was not monitored in regions 1 and 2. Thus, SGD rates calculated using
this endmember are not available.
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The SGD results using the porewater endmember reveal a different pattern of SGD
compared to those derived using the water table/shallow groundwater endmember, with lower
overall values and significant contributions from different areas at specific times (Figure 3.15).
When using porewater as the endmember, the highest SGD rates were observed in region 1, with
a peak value of 232 cm/day in May 2023, marking the largest discharge magnitude for this
endmember across all regions and months. Additional elevated rates were noted in July 2022
(141 cm/day) and January 2023 (61 cm/day), reflecting localized benthic flux contributions
during these periods. This suggests that region 1, though not validated using the shallow
groundwater inputs via water table monitoring, plays a significant role when considering
porewater fluxes.
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Figure 3.15. Radium-224 derived SGD rates using the porewater as the source/endmember.

Region 4 continued to show moderate but consistent SGD contributions with this
endmember, with its highest rate recorded in March 2022 (147 cm/day), with other notable peaks
in July (85 cm/day) and September 2022 (80 cm/day). However, these values are considerably
lower than those observed when using the shallow groundwater endmember, indicating that the
terrestrial freshwater inputs are likely higher than the recirculated counterparts. It is also possible
that more enriched 224Ra groundwater inputs enter in the nearshore Gulf of Mexico waters
rather than mixing in the water table aquifer of the barrier islands. In region 3, porewater-derived
SGD exhibited intermittent activity, with peaks of 72 cm/day in September 2022 and 39 cm/day
in July 2022. Unlike the shallow groundwater-derived SGD, no significant contributions were
observed in March or June 2022, suggesting that SGD processes in this region may be more
influenced by localized groundwater/terrestrial inputs rather than benthic interactions. Region 2
displayed sporadic and low-magnitude SGD, with peaks in August 2022 (62 cm/day) and
January 2023 (47 cm/day), showing minor contributions relative to other regions.

The comparison between the two endmembers highlights key differences in the source
and spatial dynamics of SGD. Region 4 dominated shallow groundwater-derived SGD rates, with
discharge values exceeding 700 cm/day during critical months like March and June 2022. In
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contrast, lower porewater-derived SGD rates like those in the same region, peaking at 147
cm/day, suggest that deeper groundwater flow pathways are more active in this area. Conversely,
region 1 is a dominant contributor from benthic or recirculated sources when using porewater as
the endmember, particularly in May 2023, with the highest recorded discharge of 232 cm/day.
The absence of overlapping peaks in certain regions and months, such as the lack of porewater-
derived SGD peaks in March and July 2022 in region 4, indicates distinct hydrological processes
governing discharge patterns. Shallow groundwater-derived SGD reflects aquifer/terrestrial
groundwater discharge, while porewater-derived SGD emphasizes more localized fluxes
influenced by benthic and sediment interactions (e.g., recirculation).

3.4.3.2 Radium-223 SGD rates

Results from the >’Ra mass balance using the well/shallow groundwater activities as the
source/end member show significant spatial and temporal variability in SGD rates (Figure 3.16).
Shallow groundwater-derived SGD consistently shows the highest rates in region 4, with a peak
of 769 cm/day in March 2022. This extremely high discharge rate could be related to a
hydrological event, such as seasonal aquifer recharge associated with high rain amounts, which is
characteristic of the area in the spring, which elevates water tables and regional groundwater
levels, enhancing groundwater discharge towards the Gulf. Another major peak occurred in June
2022 (653 cm/day), further underscoring the dominance of region 4 in large-scale groundwater
discharge dynamics. Sustained moderate rates were also observed during January 2023 (345
cm/day) and April 2023 (415 cm/day). In region 3, SGD rates were notably lower than in region
4 but still exhibited important seasonal contributions. The highest rate in this region was
recorded in January 2022 (198 cm/day), followed by smaller peaks in March 2022 (93 cm/day)
and June 2022 (108 cm/day). These rates indicate sporadic contributions to SGD from region 3,
with lower magnitudes than region 4. Groundwater was not monitored in regions 1 and 2. Thus,
SGD rates calculated using this endmember are not available.
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Figure 3.16. Radium-223 derived SGD rates using the shallow groundwater/water table as the

source/endmember.

The SGD results using the porewater endmember reveal a different pattern of SGD
compared to those derived using the water table/shallow groundwater endmember, with lower
overall values and significant contributions from different areas at specific times (Figure 3.17).
When using porewater as the endmember, the highest SGD rates were observed in region 1, with
a peak discharge rate of 232 cm/day in May 2023, marking the largest discharge magnitude for
this endmember across all regions and months. Additional elevated rates were noted in July 2022
(141 cm/day) and January 2023 (61 cm/day), reflecting localized benthic flux contributions
during these periods. This suggests that region 1, though not validated using the shallow
groundwater inputs via water table monitoring, plays a significant role when considering
porewater fluxes.

Region 4 continued to show moderate but consistent SGD contributions with this
endmember, with its highest rate recorded in March 2022 (147 cm/day), with other notable peaks
in July (85 cm/day) and September 2022 (80 cm/day). However, these values are considerably
lower than those observed when using the shallow groundwater endmember, indicating that the
terrestrial freshwater inputs are likely higher than the recirculated counterparts. It is also possible
that more enriched 224Ra groundwater inputs enter in the nearshore Gulf of Mexico waters
rather than mixing in the water table aquifer of the barrier islands. In region 3, porewater-derived
SGD exhibited intermittent activity, with peaks of 72 cm/day in September 2022 and 39 cm/day
in July 2022. Unlike the shallow groundwater-derived SGD, no significant contributions were
observed in March or June 2022, suggesting that SGD processes in this region may be more
influenced by localized groundwater/terrestrial inputs rather than benthic interactions. Region 2
displayed sporadic and low-magnitude SGD, with peaks in August 2022 (62 cm/day) and
January 2023 (47 cm/day), showing minor contributions relative to other regions.
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Figure 3.17. Radium-223 derived SGD rates using the porewater as the source/endmember.

The comparison between the two endmembers highlights key differences in the source
and spatial dynamics of SGD. Region 4 dominated shallow groundwater-derived SGD rates, with
discharge values exceeding 700 cm/day during critical months like March and June 2022. In
contrast, lower porewater-derived SGD rates like those in the same region, peaking at 147
cm/day, suggest that deeper groundwater flow pathways are more active in this area. Conversely,
region 1 is a dominant contributor from benthic or recirculated sources when using porewater as
the endmember, particularly in May 2023, with the highest recorded discharge of 232 cm/day.
The absence of overlapping peaks in certain regions and months, such as the lack of porewater-
derived SGD peaks in March and July 2022 in region 4, indicates distinct hydrological processes
governing discharge patterns. Shallow groundwater-derived SGD reflects aquifer/terrestrial
groundwater discharge, while porewater-derived SGD emphasizes more localized fluxes
influenced by benthic and sediment interactions (e.g., recirculation).

3.4.3.3 Radium-226 SGD rates

The analysis of SGD rates derived from ??°Ra reveals notable spatial and temporal
variability when using porewater and combined porewater/shallow groundwater averages as
endmembers (Figure 3.18 and Figure 3.19). The results emphasize significant discharge
contributions in specific regions and time periods.
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Figure 3.18. Radium-226 derived SGD rates using the shallow groundwater/water table as the

source/endmember:
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Figure 3.19. Radium-224 derived SGD rates using the porewater as the source/endmember.

The highest ??°Ra-derived SGD rate using porewater was observed in region 2, with a
peak of 257 cm/day in March 2023. This high magnitude indicates a significant discharge event,
possibly driven by seasonal hydrological heights, as explained in the 2?°Ra results section. Other
notable peaks include region 3, where SGD reached 246 cm/day in August 2022, suggesting high
activity during late summer. Using porewater 22°Ra activities as the source of surface water, SGD
rates were moderate in region 4, with a maximum of 108 cm/day in August 2023. This region
showed consistent, though lower, contributions throughout the study period. Region 1 exhibited
the lowest SGD rates overall, with a peak of 45 cm/day in May 2023, reflecting localized and
smaller-scale discharge processes compared to other regions.
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When considering porewater and shallow groundwater averages, region 3 displayed the
highest SGD rate of 269 cm/day in August 2022, aligning with the peak observed in porewater
during the same month. This indicates a strong convergence of discharge processes in this region
during late summer. Region 4 followed closely with a peak of 266 cm/day in August 2022,
suggesting substantial SGD contributions influenced by both shallow groundwater and
recirculated/benthic sources. Region 2 showed a tendency for intermittent and elevated discharge
events based on porewater-derived SGD rates. Regions 2 and 3 show the highest SGD rates,
particularly in August 2022 (region 3) and March 2023 (region 2). These months reflect critical
periods of high discharge, likely tied to seasonal aquifer recharge or enhanced SGD pathways.
Region 4, on the other hand, has consistently moderate SGD rates, with sustained activity
observed during months such as January 2023 and August 2022. While its peaks were lower than
those in regions 2 and 3, region 4 remained a stable source of groundwater discharge over time.
Region 1 exhibited the lowest overall discharge rates, with occasional peaks such as in May 2023
(45 cm/day), emphasizing its limited but localized benthic/recirculated fluxes compared to the
other regions. The use of combined porewater/shallow groundwater averages highlights August
2022 as a key period of SGD activity in regions 3 and 4, with values exceeding 265 cm/day. In
contrast, porewater-derived SGD underscores March 2023 (region 2) and August 2022 (region 3)
as critical discharge events. While region 4 exhibited consistent discharge across both methods,
regions 1 and 2 showed intermittent contributions, depending on the endmember used. These
findings emphasize the importance of regional and temporal dynamics in SGD processes, with
specific regions like 2 and 3 playing dominant roles during high-activity periods. The choice of
endmember—porewater or combined averages—significantly influences the interpretation of
discharge patterns.

3.4.4. Groundwater level prediction: model development and evaluation

Predicting groundwater levels is critical for managing water resources, mitigating
environmental risks, and ensuring infrastructure integrity. Fluctuations in groundwater levels can
significantly impact environmental systems and public health. For instance, rapid changes in
groundwater levels may lead to groundwater contamination, especially when these changes reach
buried infrastructure such as pipelines, septic systems, or utility corridors. This can facilitate the
spread of bacteria and other contaminants, increasing the risk of waterborne diseases and
ecological damage. XGBoost emerged as the best-performing model, demonstrating its
robustness and adaptability to the complex, multivariate dataset. and Figure 3.21 present the
line charts for the model developed to predict groundwater levels in areas 3 and 4. Notably, in
this study, we incorporated various latent variables that do not directly correlate with
groundwater levels. Despite this, the performance of the model remains acceptable, with an
RMSE of 0.061, R? value of 0.93, and an MAE of 0.04 for area 3, as well as an RMSE of 0.05,
R? value of 0.97, and an MAE of 0.03 for area 4, which demonstrates the model's robustness and
predictive capability.

The model successfully captures the overall trend and changes in groundwater levels,
even when considering factors that indirectly influence them. This indicates that the model
generalizes well to unseen data and provides reliable predictions for future groundwater level
variations. Such predictive accuracy is essential for proactive water management and minimizing
risks associated with fluctuating groundwater levels, including bacterial contamination and
potential harm to buried infrastructure.
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Figure 3.20. Performance of the Groundwater Level Prediction Model for Wells 7, 8, 9, 10,
11, and 13 (Area 3).

46




Predicted vs Actual for GW elevation2 (m) - Fold 3 Predicted vs Actual for GW Elevation3 (m) - Fold 3

— Fain GW elevation2 (m)
—— st GW elevation2 (m)
22 == Predicted Train GW elevation2 (m)
Predicted Test GW elevation2 (m)

— ‘Fain GW Elevation3 (m)
& 28 | — st GW Elevation3 (m)
n == Predicted Train GW Elevation3 (m)
Predicted Test GW Elevation3 (m)

GW elevation2 (m)
GW Elevation3 (m)

0 100 200 300 00 500 [] 100 200 300 400 500
Data Index Data Index

Predicted vs Actual for GW elevation4 (m) - Fold 3 Predicted vs Actual for GW elevation5 (m) - Fold 3

—— Tain GW elevationd (m)
— st GW elevationd {m}
== Predicted Train GW elevationd (m)
Predicted Test GW elevationd (m)

—— Tain GW elevation5 (m)
= Test GW elevationS (m)
40 ] == Predicted Train GW elevations (m)
Predicted Test GW elevations (m)

GW elevation4 (m)
GW elevation5 (m)

0 100 200 300 00 500 [] 100 200 300 400 500
Data Index Data Index

Figure 3.21. Performance of the Groundwater Level Prediction Model for Wells 2, 3, 4, and 5
(Area 4).

In this research, feature importance was computed to understand how different
environmental and hydrological factors influence groundwater levels at various wells. The model
used to predict groundwater levels (e.g., XGBoost) provided feature importance scores that
helped to identify which factors are most influential at each groundwater monitoring location. As
shown in Figure 3.22, groundwater levels in the Well 7 area are strongly influenced by
streamflow, rainfall, and soil moisture. These factors play a particularly significant role during
heavy rain and tidal fluctuations when their combined effects on water recharge and groundwater
levels are most pronounced. In contrast, well 11 shows a higher sensitivity to rainfall and soil
moisture, with smaller contributions from tide and streamflow. The results indicate that the
shallow groundwater levels at different locations are influenced by distinct environmental
conditions. By identifying the key factors that influence each well, predictions can be made more
efficiently and accurately, ultimately saving time and resources. These findings highlight the
importance of considering local environmental and hydrological factors when developing
predictive groundwater-level models.

Due to the heterogeneity and complexity of dynamic processes in groundwater systems,
suitable methods are essential for accurately capturing their temporal and spatial variations.
While numerous techniques have been explored to quantify groundwater variations across
temporal and spatial scales, each with its own strengths and limitations, this study introduces a
data-driven predictive model to predict daily regional groundwater levels in distinct watersheds.
The study area was divided into four distinct locations based on their watersheds. This approach
allowed the developed model to capture the unique characteristics of each region, which
improved the accuracy of groundwater level predictions. By taking into account localized
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hydrological variations and site-specific factors, the model provided more reliable results, which
can help tailor management strategies to the specific characteristics of an area. Temporal
variability in groundwater is primarily driven by hydro-meteorological conditions, as
demonstrated in previous studies (Chang et al., 2016). Our analysis shows that the proposed
advanced machine learning model could capture temporal-spatial variations and provide reliable
predictions for the given dataset, demonstrating high correlation coefficients and low RMSE
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Figure 3.22. Feature importance for area 3: the top 20 most important features based on the
weight metric for predicting groundwater elevation at multiple wells. Each subplot corresponds
to one well, with features ordered by their contribution to reduce the model’s error. Bars
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Figure 3.23. Feature importance for area 4: the top 20 most important features based on the
weight metric for predicting groundwater elevation at multiple wells. Each subplot corresponds
to one well, with features ordered by their contribution to reduce the model s error. Bars
represent the importance of each feature, and values on the bars indicate their relative

importance score.

The model assigns importance scores to various factors based on how much they
contribute to predicting groundwater elevation. Areas 3 and 4 are located in Watershed 11
(Figure 3.24) Area 3, which includes wells 7, 8, 9, 10, 11, 13, and 14, is influenced by factors
such as streamflow and soil moisture. In contrast, Area 4, which includes wells 2, 3, 4, and 5, is
primarily affected by terrestrial water storage and rainfall. The following presents a detailed
description of the factors correlated with groundwater elevation in each well, as indicated by the

model results:

Well #2: Average territorial water storage holds the highest significance with a score of

0.59, followed by average soil moisture at 0.06. Other key factors include cumulative rainfall
from station HCCT?2 over 15 days (0.04), and from station KGLS (Figure 3.24) over 7 days
(0.04), as well as combined cumulative rainfall from KGLS and LGCT2 over 10 and 15 days,
respectively (0.02). Additionally, tidal influences at stations 8771486 with lags of -4 and 5 days,
and 8771013 with lags of -5 and 4 days, along with cumulative rainfall from KGLS station over
5 days, CBAT?2 rainfall station over 5 days, average root soil moisture for the area 4, and
streamflow at station 08078930, all show a contribution of 0.01 in the model (Figure 3.23). This
demonstrates that the model can uncover latent variables, allowing for a deeper understanding
and accurate prediction of groundwater elevation. Well #3: Average territorial water storage
holds the highest significance with a score of 0.32, followed by the KLVJ rainfall station with
15-day cumulated rainfall (0.12), and BZRT2 rainfall with 7-day cumulated rainfall (0.09).
Additionally, average soil moisture, tidal influence at station 8771450 with a lag of 6 days,
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streamflow at station 08078930, all have an importance score of 0.05. Rainfall from BZRT2
station with 15-day cumulated rainfall (0.04), average root soil moisture, and rainfall from
CCBT?2 station for 7 days contribute 0.03. Streamflow at station 08077110 also holds a score of
0.02. Other key factors, as shown in Figure 3.23, have an importance score around 0.01 in the
model.

Well #4: The highest significance is held by the LGCT2 rainfall station with a 15-day
cumulative value (0.25), followed by average soil moisture (0.22), and streamflow at station
08077110 (0.17). Factors include BZRT?2 rainfall station with a 15-day cumulative value and
average territorial water storage, showing scores of 0.07 and 0.04, respectively. MOKT?2 rainfall
station with a 7-day cumulative value, average root soil moisture, and HCCT2 with a 15-day
cumulative value, wind direction at station 8771013 (EW_60) all contributing 0.02. Additionally,
tidal influences at stations 8772471, 8771013 with lag times along with streamflow at station
08117301, all have an importance score of 0.01.

Well #5: The highest significance is held by average soil moisture for the area 4 (0.34),
followed by streamflow at station 08077110 (0.15). Other key factors include BZRT?2 rainfall
station with a 15-day cumulative value (0.09), KLVJ rainfall station with a 10-day cumulative
value (0.07), CCWT2 with a 10-day cumulative value (0.05), and KLLBX rainfall station with a
15-day cumulative value (0.03). Additionally, MRMS rainfall located in Well 3, average
territorial water storage, and CCBT2 rainfall station with a 10-day cumulative value, all show a
contribution of 0.02. Other factors, such as streamflow at station 08078930, average root soil
moisture, and tidal influences at station 8772471, have values less than 0.01.

Well #7: Streamflow at station 08078930 has the highest significance with a score of

0.23. MOKT?2 rainfall station for 10 days and HCCT2 rainfall station for 4 days are both 0.09,
followed by DNCT?2 rainfall station for 5 days at 0.07. Average soil moisture, BZRT2 rainfall for
4 days, and UCCT?2 rainfall for 10 days are all 0.04. Additionally, LGCT2 for 10 days, LPST2
for 5 days, and LGCT?2 for 7 days contribute 0.03. HCCT?2 rainfall for 15 days, KLV rainfall for
7 days, LGCT2 rainfall for 15 days, and DNCT2 rainfall for 15 days have a value of 0.02. Other
factors, such as streamflow at station 08116650, other rainfall stations, and tide level at station
8771972 with a lag of 5 days, show 0.01.

Well #8: Streamflow at station 08117210 has the highest significance at 0.21, followed by
average soil moisture at 0.14, and LPST2 rainfall for 10 days at 0.11. Other key factors include
average terrestrial water storage (0.07), OBRT2 rainfall for 15 days (0.06), and KLBX rainfall
for 7 days (0.04). Additionally, tide level at station 8772471 with a lag of 3 days contributes 0.03,
while BZRT2 and MOKT2 with 15-day and 10-day accumulations, respectively, both show a
value of 0.03. MOKT2, UCCT2, and BZRT?2 all with 10-day accumulations, along with DNCT?2,
LPST2, and MCFT2 with 15-day accumulations, are all 0.02.

Well #9: BZRT?2 rainfall station for 10 days has the highest significance at 0.08, followed
by MOKT?2 rainfall station for 15 days at 0.10, and streamflow at station 08078000 at 0.08.
Other key factors include CBAT?2 rainfall station for 10 days (0.07), streamflow at station
08079010 (0.04), and CCWT?2 rainfall station for 5 days, KGLS rainfall station for 15 days,
MOKT?2 rainfall station for 7 days, HCCT2 rainfall station for 15 days, KLVJ rainfall station for
15 days, and wind direction at station 8771972 (EW) all contributing 0.03. Additionally, average
soil moisture and average root zone soil moisture both show a value of 0.02. Other factors, such
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as wind direction at station 8771972 (NS-30) and streamflow at East River station 08117301,
along with other factors, are 0.01 or less.

Well #10: Streamflow at station 08078000 has the highest significance at 0.13, followed
by BZRT2 rainfall for 15 days at 0.12. Other key factors include CCBT2 rainfall with a 10-day
cumulative value (0.06), and KLVJ rainfall for 15 days (0.06). Additionally, average soil
moisture and MOKT2 rainfall for 5-day accumulative values are both 0.05, while LPST?2 rainfall
for 15 days and CCBT?2 for 7 days contribute 0.04. Tide level at station 8772471 with a lag of 4
days is 0.03, and UCCT?2 rainfall for 15 days is 0.03. Furthermore, KGLS rainfall for 3 days and
4 days, CBAT2 for 10 days, MOKT?2 for 4 days, and LGCT?2 for 15 days are all 0.02. Other
factors, such as average terrestrial storage, streamflow at station 08117210, tide level at 8772471
with a lag of 5 days, and other rainfall stations, are 0.01.

Well #11: Rainfall at OBRT?2 station with a 3-day cumulative value is 0.34, and a 4-day
cumulative value is 0.12. Rainfall at station BZRT2 for 10 days contributes 0.05, while average
soil moisture and rainfall at OBRT2 station both show values of 0.04. Additionally, rainfall at
BZRT2 and LGCT?2 stations with 2-day and 10-day accumulative values, respectively, are both
0.03, and LGCT?2 rainfall for 3 days is 0.02. Other rainfall stations and streamflow at station
08078000 have values 0.01.

Well #13: KLVJ rainfall station with a 10-day cumulative value is 0.22, followed by
streamflow at station 08078930 (0.13). Rainfall from MOKT?2 for 3 days, OBRT2 for 5 days,
LPST2 for 15 days, and BZRT?2 for 5 days contribute 0.09, 0.08, 0.07, and 0.07, respectively.
Average soil moisture shows a value of 0.05, while LGCT2 rainfall station for 7 days is 0.04.
Additionally, BZRT2, MOKT2, and BZRT?2 rainfall stations with 7-day, 5-day, and 10-day
cumulative values are 0.02. Other factors show values of 0.01 or less.

Well #14: MOKT?2 rainfall for 10 days has the highest significance at 0.15, followed by
LPST2 rainfall for 15 days at 0.13. Streamflow at station 08117210 contributes 0.10, and
UCCT?2 rainfall for 15 days and 7 days shows values of 0.08 and 0.06, respectively. BZRT2
rainfall for 5 days and KGLS rainfall for 7 days are both 0.05. Additionally, KGLS for 4 days,
KLBX rainfall for 15 days, and streamflow at station 08078930 are 0.04. Average soil moisture
contributes 0.03, while BZRT?2 rainfall for 7 days, MOKT2 rainfall for 15 days, average root
zone soil moisture, and KGLS rainfall for 5 days are all 0.02. Other factors, such as average
surface runoff, streamflow at station 08117301, and other rainfall stations, show values of 0.01.
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Figure 3.24. The spatial distribution of stations monitoring environmental factors within the
study area.

According to Figure 3.23, Wells 4 and 5 are near Jamaica Beach, suggesting a stronger
connection with the tidal and coastal hydrological processes. This is why more tidal stations are
among the top 20 most important features. On the other hand, Wells 2 and 3 are located farther
north and are likely shielded from direct tidal influences by land features. Area 4 is most
significantly impacted by terrestrial water storage and rainfall. Variations in terrestrial water
storage can directly influence groundwater levels and indirectly alter flood risk (Asoka and
Mishra., 2020). Being closer to the coast, wells 4 and 5 are more influenced by surface
hydrological factors like tidal fluctuations, direct rainfall, and streamflow. The higher importance
of soil moisture and streamflow (Figure 3.23) indicates that groundwater at these locations is
influenced by watershed hydrology including surface and near-surface processes. The high
significance of soil moisture (0.22 for Well 4 and 0.34 for Well 5) and streamflow highlights the
role of coastal surface processes. This is supported by rainfall contributions from nearby stations
and the influence of tidal lags.

Located farther inland, groundwater in the areas near wells 2 and 3 is less affected by
direct tidal or surface interactions. The dominance of terrestrial water storage reflects subsurface
hydrological processes like groundwater recharge and storage within the watershed, which are
more critical in areas farther from immediate surface water bodies. The importance of terrestrial
water storage (scores of 0.59 and 0.32) aligns with their inland position, where recharge and
subsurface flow govern groundwater dynamics.
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Area 3 is primarily influenced by streamflow, with the highest importance placed on
streamflow at station 08078930 in well 7 in Oyster Creek. Average soil moisture, rainfall, and
tidal influences also play significant roles, with factors such as rainfall for 10 days (0.09) at
station MOKT2 and streamflow at station 08117210 (0.21) contributing to groundwater elevation
predictions. The model captures local hydrological processes, including variations in rainfall
across different stations (BZRT2, MOKT2, LGCT2) and their cumulative effects over various
time periods. For well #8, streamflow and soil moisture are significant due to potential lateral
water movement and water retention capacity in the soil. The prominence of these factors
suggests a linkage to groundwater recharge through these mechanisms. Well #9 is influenced by
both recent rainfall and longer-term streamflow conditions. This implies a mix of immediate
rainfall effects and the cumulative impact of water movement through the watershed affecting
groundwater levels. Well #10 appears to be more influenced by streamflow and cumulative
rainfall, with a strong dependence on both short-term and longer-term hydrological inputs. Well
#11's top feature indicates a significant dependency on recent rainfall events, suggesting rapid
groundwater recharge and vulnerability to immediate hydrological changes. Well #13’s strong
reliance on cumulative rainfall over 10 days, combined with streamflow, reflects its dependency
on sustained terrestrial hydrological inputs over time. Well #14 demonstrates a balance between
cumulative rainfall over 10 days and streamflow influences, with moderate contributions from
soil moisture and tide levels.

The varying top features (Figure 3.23 and Figure 3.24) across wells reflect differences in
their hydrological sensitivities. Wells closer to Gulf or with a higher connectivity to surface
water sources, like streamflow, show higher significance for immediate water inputs. Conversely,
wells that integrate longer-term cumulative rainfall and soil moisture suggest a more prolonged
hydrological response. These variations indicate distinct local hydrological conditions
influencing groundwater levels, causing the differences in top features.

3.4.5. Depth to groundwater and implications for water table flooding and subsurface
infrastructure damage

In area 3, which encompasses wells 2, 3, 4, and 5, depth-to-water (DTW) patterns over
the observed period reveal significant seasonal variability (Figure 3.25). During late winter to
early spring (e.g., early 2023), the DTW is generally lower, reflecting a water table closer to the
ground surface, typically approaching 0 meters or less for Wells 4 and 5, increasing the
likelihood of flooding. Conversely, in the summer months, the DTW increases, indicating a
deeper water table farther below the ground surface. Among these wells, well 3 consistently
exhibits the greatest DTW (deepest water table) throughout the monitoring period, with values
regularly exceeding 1.5 to 2 meters, particularly during summer and decreasing starting with
December 2022. This fluctuation highlights periods when the water table near well 3 is least
likely to experience water table flooding, even during wetter seasons. Wells 4 and 5, located near
the Gulf of Mexico dune system in the tidal zones, are more prone to flooding during high tide or

53



storm surges, especially during late winter and early spring when the water table is naturally
higher.
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Figure 3.25. Depth to water continuous measurements in monitoring wells for areas 3 and 4 (see
Figure 2.1 for geographic locations). The ground surface is the reference point at () meters).

In area 4, which includes wells 7, 8, 9, 10, 11, 13, and 14, a similar examination of DTW
patterns reveals shallow water tables during late winter to early spring and deeper water tables
during the summer months. Wells 7, 8, and 9 are particularly noteworthy, as their DTW values
often approach or fall below 0.5 meters in late winter to early spring, indicating a high risk of
water table flooding during recharge events or storms. Conversely, wells 10, 13, and 14 exhibit
greater seasonal fluctuations, with DTW values dropping to between 1- and 1.5 meters during
summer and rising closer to 0.5 meters in late winter and early spring. In particular, well 11 is
consistently near or above the ground surface, with the highest and most frequent risk of flooding
of underground infrastructure. The risk of water table flooding is most pronounced for wells 7
and 8 during late winter and early spring due to their persistently shallow DTW. In contrast,
wells 10 and 13, despite generally deeper DTW, could experience localized flooding during
heavy recharge events.

The susceptibility of septic systems and sewage lines to failure is an additional concern in
both areas. In area 3, the area near wells 4 and 5, with DTW values below 1 meter during late
winter and early spring, faces increased risks of water infiltration and contamination, particularly
during heavy rainfall or tidal surges. The area near Well 3, with consistently deeper DTW values,
poses the lowest risk for septic systems and sewage lines in this area. In area 4, Wells 7, 8, and
11 are at the highest risk for compromised septic systems and sewage lines due to their
persistently shallow DTW values, often nearing or below 0.5 meters during late winter to early
spring or storm surges. While Wells 14, 9 and 13 demonstrate deeper DTW values, suggesting
lower susceptibility, localized recharge events during extreme conditions (e.g., late winter 2022-
spring 2023) will likely compromise infrastructure performance.
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3.5. Discussion

3.5.1. Submarine groundwater discharge dynamics in barrier islands

The sediment characterization and hydrological data collected from the barrier islands in
this study between Quintana Park and the Heritage Preserve provide critical insights into the
spatial and temporal variability of groundwater behavior and its interaction with nearshore Gulf
of Mexico waters. This section reveals the complex interplay between subsurface sediment
makeup of the water table aquifer, groundwater discharge dynamics, and radium isotopes as
tracers for SGD, shedding light on the processes influencing the shallow/water table aquifer
systems in the barrier islands.

Sediment Core Characteristics and Their Implications

The sediment cores reflect substantial variability in texture, composition, and moisture
across the study area, highlighting distinct depositional environments shaping the barrier island
shallow groundwater system. Sediments near the coastline, such as those at wells 7, 8, and 9, are
dominated by coarser materials like sandy silt and gravel, indicative of higher depositional
energy. These permeable layers facilitate significant groundwater movement, as evidenced by
high Darcy velocities and SGD rates in these locations. In contrast, inland cores, such as well 1,
exhibit fine-grained clay and silt layers with minimal sand content, which contribute to reduced
permeability and slower groundwater movement. This sediment composition aligns with
observed DTW patterns, as coastal wells (e.g., wells 7, 8, and 9) consistently exhibit shallow
water tables during late winter and early spring, increasing risks of water table flooding.
Conversely, inland wells, such as Well 3 in area 3, maintain deeper DTW values year-round,
reducing their susceptibility to water table surges.

Groundwater Dynamics and SGD Variability

The groundwater elevation data reveal clear spatial patterns and temporal variability,
strongly influenced by hydrogeological and environmental conditions. Wells in areas 3 and 4
displayed distinct hydrodynamic behaviors:

Area 3: Inarea 3, which encompasses wells 2, 3, 4, and 5, DTW patterns over the
observed period reveal significant seasonal variability (Figure 3.25). During late winter to early
spring (e.g., early 2023), the DTW is generally lower, reflecting a water table closer to the
ground surface, typically approaching 0 meters or less for Wells 4 and 5, increasing the
likelihood of flooding. Conversely, in the summer months, the DTW increases, indicating a
deeper water table farther below the ground surface. Among these wells, well 3 consistently
exhibits the greatest DTW (deepest water table) throughout the monitoring period, with values
regularly exceeding 1.5 to 2 meters, particularly during summer and decreasing starting with
December 2022. This fluctuation highlights periods when the water table near well 3 is least
likely to experience water table flooding, even during wetter seasons. wells 4 and 5, located near
the Gulf of Mexico dune system in the tidal zones, are more prone to flooding during high tide or
storm surges, especially during late winter and early spring when the water table is naturally
higher. Additionally, wells in area 3, particularly near well 7, exhibited highly dynamic
responses to seasonal recharge events. High groundwater velocities in winter months (e.g., 187
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cm/day in January 2023) correspond to peaks in SGD rates, underscoring the influence of rainfall
and aquifer recharge (as indicated by the streamflow predictive variable in the ML model
results). Negative gradients recorded in warmer months reflect reduced groundwater flow toward
the coast from the watershed, which facilitates seawater intrusion, a result of higher tides and
lower groundwater elevations (Qiu et al., 2012; Saba et al., 2024). The strong correlation
between streamflow and groundwater levels in area 3 highlights the regional connectivity
between surface water and aquifer systems. The variability in sediment permeability in this area
amplifies these dynamics, with sandy layers promoting rapid groundwater flow and discharge.

Area 4: In area 4, which includes wells 7, 8, 9, 10, 11, 13, and 14, a similar examination
of DTW patterns reveals shallow water tables during late winter to early spring and deeper water
tables during the summer months. Wells 7, 8, and 9 are particularly noteworthy, as their DTW
values often approach or fall below 0.5 meters in late winter to early spring, indicating a high
risk of water table flooding during recharge events or storms. Conversely, wells 10, 13, and 14
exhibit greater seasonal fluctuations, with DTW values dropping to between 1- and 1.5-meters
during summer months and rising closer to 0.5 meters in late winter and early spring. In
particular, well 11 is consistently near or above the ground surface, with the highest and most
frequent risk of flooding of underground infrastructure. The risk of water table flooding is most
pronounced for wells 7 and 8 during late winter and early spring due to their persistently shallow
DTW, while wells 10 and 13, despite generally deeper DTW, could experience localized
flooding during heavy recharge events. Groundwater in area 4 was more stable, with lower but
consistent SGD rates compared to area 3. Sediments in this area are dominated by clay and silt,
which reduce permeability and buffer against rapid fluctuations. Peaks in groundwater velocity
(e.g., 8.0 cm/day in January 2023) align with seasonal recharge, although the magnitude of SGD
rates remains lower due to the less permeable substrate.

Radium Isotope Insights into SGD Patterns

This study finds radium isotopes as a powerful tool for tracing SGD, revealing both
seasonal and spatial variability in groundwater discharge processes along the nearshore Gulf of
Mexico. For instance, 22*Ra activities in porewater were highest in areas with significant
groundwater-surface water interactions, such as stations P14 and S5, where SGD fluxes were
amplified by seasonal recharge events. Similarly, 2°Ra peaks in porewater (e.g., 1,706 Bg/m3 at
P2) and surface water (e.g., 661 Bg/m? at S5) indicate localized sediment-water interactions and
episodic SGD pulses. The temporal alignment of these peaks with Darcy velocity data confirms
the role of hydrological events, such as heavy rainfall, local and distant aquifer recharge, and
regional groundwater inputs nearshore or tidal forcing, in driving SGD dynamics. The long-lived
isotope 2?°Ra showed more stable patterns across the study area, with higher activities in
porewater and groundwater during fall months (e.g., October 2022). which are also supported by
Darcy’s velocity estimates, which peak in the fall months. These peaks likely reflect sustained
groundwater discharge from deeper aquifers, where prolonged residence times facilitate radium
mobilization. The higher activities in region 3 during late summer further underscore the
importance of seasonal recharge and aquifer flushing in this dynamic area and the potential for
impacting nearshore water table dynamics.
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Coastal areas near wells 4 and 5 in area 3 and wells 7, 8, and 11 in area 4 are particularly
susceptible to the compounded effects of rainfall, tidal forcing, and aquifer recharge. These
factors amplify groundwater discharge, posing potential risks of nutrient and contaminant
transport into nearshore Gulf waters, as well as increasing risks to underground infrastructure
such as septic systems and sewage lines. The high SGD rates in area 3 during colder months and
the associated radium peaks indicate intense sediment-water interactions and nutrient fluxes,
which could influence coastal ecosystems and the buried infrastructure. The potential for
seawater intrusion during warmer months further emphasizes the need for monitoring and
management strategies to protect freshwater resources and maintain the ecological balance of the
Gulf of Mexico. The findings significantly advance the understanding of how water table
patterns influence infrastructure vulnerability and SGD processes along the Texas barrier islands.

3.5.2. Groundwater levels predictive model

The analysis of groundwater predictors highlights the complex interplay between
environmental and hydrological factors driving water table fluctuations in areas 3 and 4. These
fluctuations are influenced by streamflow, rainfall, soil moisture, terrestrial water storage, and
tidal dynamics, with each factor contributing uniquely based on the spatial and temporal
characteristics of the groundwater systems in these areas (MDNR, 2020; Wei et al., 2024). This
study demonstrates the importance of understanding these drivers to predict groundwater
behavior and mitigate associated risks effectively. In area 4, terrestrial water storage emerged as
the most significant predictor of groundwater levels, revealing the critical role of subsurface
hydrological processes, particularly groundwater recharge and long-term water storage within
the watershed. Based on the model results in this area, groundwater is largely shielded from the
direct impacts of tidal and surface hydrology, resulting in more stable water table fluctuations.
However, it remains vulnerable to prolonged upstream recharge events, where sustained rainfall
and increases in aquifer storage can lead to gradual yet significant rises in water levels. This
sensitivity to subsurface dynamics highlights the need for long-term monitoring and management
strategies tailored to inland aquifers.

Coastal areas within the study, particularly those near wells 4 and 5 in area 4, exhibited a
stronger connection to surface hydrological processes, including tidal influences, rainfall, and
soil moisture. Groundwater in these regions is more susceptible to rapid fluctuations due to the
proximity to tidal zones and the influence of near-surface hydrology (Wei et al., 2023). High soil
moisture and lagged tidal effects suggest strong interactions between rainfall-driven recharge and
tidal cycles. This dynamic interplay makes coastal groundwater systems particularly vulnerable
during high tides or storm surges when water levels can rise quickly, increasing the risk of
groundwater flooding and contamination from surface water or seawater intrusion (Allen et al.,
2019). Effective coastal management must account for these interactions to reduce risks
associated with water table fluctuations.

In area 3, groundwater near wells 7, 8, and 13 was predominantly influenced by
streamflow and soil moisture, with rainfall also playing a significant role. For example,
streamflow at station 08078930 was the most important predictor for groundwater levels in this
region, illustrating the strong connectivity between streamflow and groundwater recharge (Healy
and Scanlon, 2010). These groundwater systems displayed dynamic responses to hydrological
events, such as rapid recharge during heavy rainfall or upstream runoff. However, this dynamic
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nature also makes them more prone to sharp water table fluctuations, which could exacerbate
flooding risks during storm events or periods of high streamflow (Bowes et al., 2019; Serafin et
al., 2019). Additionally, groundwater systems influenced by soil moisture and rainfall, as
observed in areas near wells 8 and 13, may experience compounding effects of prolonged wet
conditions, amplifying groundwater level rises. The compounded effects of multiple predictors,
such as rainfall, upstream recharge, and tidal influences, present significant challenges in
managing groundwater in these areas. Coastal groundwater systems face heightened risks when
high tides coincide with heavy rainfall, leading to rapid water table surges (Jang and Chang,
2022; Lian et al., 2017; Jalili Pirani and Najafi, 2020). Similarly, inland groundwater may
experience delayed yet substantial rises from sustained upstream recharge (Neri-Flores et al.,
2019), increasing the potential for downstream coastal flooding due to increased hydraulic
gradients towards the coast (Pietrafesa et al., 2019). These findings underscore the
interconnected nature of groundwater systems, where localized and regional hydrological
processes interact to influence water table dynamics in barrier islands.

3.6. Conclusion/Recommendation

Conclusions

The findings from this study provide essential insights into the hydrological dynamics
that influence the water table along the Texas barrier islands, specifically between Quintana Park
and the Heritage Preserve (see Figure 2.1).

1. Sediment Characterization and Groundwater Dynamics:

e Sediment cores reveal significant heterogeneity across different wells, demonstrating
variability and permeability in depositional environments. Coastal wells (e.g., wells 7, 8, and
9) predominantly feature sandy and gravelly textures, facilitating high groundwater flow. In
contrast, inland wells (e.g., wells 1 and 10) show finer-grained sediments (clay and silt),
characteristically lower permeability, and slow down groundwater movement.

e Seasonal variability in groundwater discharge is evident, with higher discharge rates
occurring during cooler months due to rainfall and aquifer recharge. Conversely, seawater
intrusion is more pronounced during warmer months, driven by tidal influences and reduced
groundwater gradients.

e DTW patterns highlight seasonal trends in water table behavior. In area 3, wells 4 and 5 show
shallow water tables during late winter and early spring, with DTW values approaching 0
meters, increasing the likelihood of flooding. Conversely, well 3 exhibits the greatest DTW
(deepest water table), consistently exceeding 1.5-2 meters, particularly in the summer, which
reduces its vulnerability to flooding. In area 4, wells 7, 8, and 11 display persistently shallow
DTW values during late winter and early spring, often approaching or falling below 0.5
meters, highlighting a high risk of water table flooding and compromised infrastructure.

2. Submarine Groundwater Discharge (SGD) and Radium Dynamics:

e Radium isotopes (224Ra, 223Ra, and 226Ra) are effective indicators of groundwater
discharge, revealing peaks in SGD during periods of increased recharge and aquifer flushing.
For instance, elevated 224Ra levels in porewater and surface water correlate with enhanced
SGD, underscoring the role of hydrological events in facilitating groundwater-surface water
exchanges.
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The variability in SGD highlights the interplay between sediment composition, tidal forcing,
and seasonal recharge. Coastal regions, in particular, are more vulnerable to rapid water table
fluctuations, which can lead to nutrient and contaminant transport into nearshore ecosystems.
Areas with shallow DTW, such as wells 4, 5, 7, and 8, are more prone to flooding during late
winter and early spring recharge. In these regions, the interplay of tidal influences,
precipitation, and aquifer recharge amplifies SGD rates and their associated impacts on
coastal ecosystems and infrastructure.

3. Groundwater Level Prediction and Key Drivers:

Predictive modeling identifies streamflow, rainfall, soil moisture, terrestrial water storage,
and tidal dynamics as key drivers of water table fluctuations. In area 3, the strong influence
of streamflow and soil moisture indicates dynamic responses to surface hydrology, while the
predominance of terrestrial water storage in area 4 reflects subsurface hydrological processes.
The dynamic nature of coastal groundwater systems increases the risks of flooding and
seawater intrusion during high tides or storm surges. The DTW patterns further emphasize
these risks, with coastal wells in both areas showing shallow water tables and high flooding
vulnerability during late winter and early spring recharge periods. Inland wells with deeper
DTW values, such as well 3 in area 3, demonstrate reduced susceptibility to such risks.

Recommendations
1. Monitoring and Data Collection:

Implement long-term monitoring programs that focus on groundwater levels, tidal cycles,
and precipitation patterns. Enhanced spatial and temporal data resolution will improve model
accuracy and help identify critical periods of vulnerability, especially during seasonal
transitions.

Expand radium isotope sampling to more comprehensively track SGD and sediment-water
interactions under diverse hydrological conditions.

Integrate DTW monitoring into existing programs, focusing on wells with high flooding
vulnerability (e.g., wells 4, 5, 7, 8, and 11). This will provide critical insights into seasonal
and event-driven risks to water table dynamics and infrastructure.

2. Coastal and Groundwater Management:

Develop adaptive groundwater management strategies to mitigate the risks of seawater
intrusion and groundwater flooding in coastal areas, especially during high tides and storm
surges. Targeted interventions like recharge wells or tidal barriers can help stabilize water
table fluctuations.

Emphasize sustainable water use and storage strategies in inland regions, focusing on
recharge zones to maintain aquifer levels during prolonged dry spells or periods of high
withdrawal.

Prioritize interventions in areas with shallow DTW during high-risk periods (e.g., late winter
and early spring) to protect septic systems and underground infrastructure from water
infiltration and contamination.

3. Model Development and Application:
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e Incorporate site-specific features, such as sediment composition and aquifer geometry, into
predictive models to enhance their utility for localized decision-making. Additionally,
integrating climate projections can help anticipate future hydrological shifts and their impacts
on groundwater dynamics.

e Utilize the predictive model to design early-warning systems for water table rises and
flooding risks, enabling proactive response measures during hydrological extremes.

¢ Refine the model to account for the seasonal variability in DTW, particularly in high-risk
wells, to improve predictions of infrastructure vulnerability and flooding risks.

4. Ecosystem and Infrastructure Protection:

e Conduct vulnerability assessments for critical coastal ecosystems and infrastructure exposed
to fluctuating groundwater levels and SGD-induced nutrient transport. Develop policies to
minimize ecological impacts while protecting infrastructure integrity.

e Focusonwells7,8,and 11 in area 4 and wells 4 and 5 in area 3 for infrastructure protection,
as these areas consistently exhibit shallow DTW values during high-risk periods. Strategies
to mitigate flooding and contamination risks should prioritize these locations.

e Promote interdisciplinary approaches that combine hydrology, geology, and coastal
management to tackle the complex challenges groundwater dynamics present in barrier
island environments.

These conclusions and recommendations lay the groundwork for sustainable groundwater
and coastal resource management, enhancing the region’s resilience against environmental and
hydrological stressors.

3.7. References

AcreValue. (2023). Soil Survey Maps and Data.

Allen, T. R., Crawford, T., Montz, B., Whitehead, J., Lovelace, S., Hanks, A. D., Christensen, A.
R., & Kearney, G. D. (2019). Linking water infrastructure, public health, and sea level
rise: Integrated assessment of flood resilience in coastal cities. Public Works Management
& Policy, 24(1), 110-139. https://doi.org/10.1177/1087724X18798380

Asoka, A., & Mishra, V. (2020). Anthropogenic and climate contributions on the changes in
terrestrial water storage in india. Journal of Geophysical Research. Atmospheres,
125(10), n/a. https://doi.org/10.1029/2020JD032470

Bianchi, T. S., Allison, M. A., & Cai, W. (2014). Biogeochemical dynamics at major river-
coastal interfaces: Linkages with global change (1st;1; ed.). Cambridge University Press.
https://doi.org/10.1017/CBO9781139136853

Bowes, B. D., Sadler, J. M., Morsy, M. M., Behl, M., & Goodall, J. L. (2019). Forecasting
groundwater table in a flood prone coastal city with long short-term memory and
recurrent neural networks. Water, 11(5), 1098. https://doi.org/10.3390/w11051098

Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S., & Taniguchi, M. (2003).
Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1-2), 3-33.
https://doi.org/10.1023/b:biog.0000006066.21240.53

Chang, F., Chang, L., Huang, C., & Kao, I. (2016). Prediction of monthly regional groundwater
levels through hybrid soft-computing techniques. Journal of Hydrology (Amsterdam),
541, 965-976. https://doi.org/10.1016/].jhydrol.2016.08.006

60


https://doi.org/10.1177/1087724X18798380
https://doi.org/10.1029/2020JD032470
https://doi.org/10.1017/CBO9781139136853
https://doi.org/10.3390/w11051098
https://doi.org/10.1023/b:biog.0000006066.21240.53
https://doi.org/10.1016/j.jhydrol.2016.08.006

Charette, M. A., & Sholkovitz, E. R. (2006). Trace element cycling in a subterranean estuary;
part 2, geochemistry of the pore water. Geochimica Et Cosmochimica Acta, 70(4), 811-
826. https://doi.org/10.1016/j.gca.2005.10.019

Dimova, N., Burnett, W. C., Horwitz, E. P., & Lane-Smith, D. (2007). Automated measurement
of 224Ra and 226Ra in water. Applied Radiation and Isotopes, 65(4), 428-
434. https://doi.org/10.1016/j.apradis0.2006.10.005

EPA (2020). National Water Quality Inventory Report to Congress: 2017. United States
Environmental Protection Agency.

Fetter, C. W. (2001). Applied hydrogeology (4th;4; ed.). Prentice Hall.

Healy, R. W., & Scanlon, B. R. (2010). Estimating groundwater recharge (1st ed.). Cambridge
University Press. https://doi.org/10.1017/CB0O9780511780745

Hu, C., Muller-Karger, F. E., & Swarzenski, P. W. (2006). Hurricanes, submarine groundwater
discharge, and florida's red tides. Geophysical Research Letters, 33(11).
https://doi.org/10.1029/2005GL025449

Jalili Pirani, F., & Najafi, M. R. (2020). Recent trends in individual and multivariate compound
flood drivers in canada's coasts. Water Resources Research, 56(8).
https://doi.org/10.1029/2020WR 027785

Jang, J., & Chang, T. (2022). Flood risk estimation under the compound influence of rainfall and
tide. Journal of Hydrology, 606, 127446. https://doi.org/10.1016/].jhydrol.2022.12744

Jones, D., Smith, R., & Wang, H. (2019). Waterborne pathogens in coastal environments:
Sources, impacts, and mitigation. Journal of Coastal Research, 35(2), 275-289.

Kim, G., Burnett, W. C., Dulaiova, H., Swarzenski, P. W., & Moore, W. S. (2001). Measurement
of 224Ra and 226Ra activities in natural waters using a radon-in-air
monitor. Environmental Science & Technology, 35(23), 4680-
4683. https://doi.org/10.1021/es010804u

Kingma, D. P., & Welling, M. (2022). Auto-encoding variational bayes. Cornell University
Library, arXiv.org

Knee, K., & Paytan, A. (2011). 4.08 submarine groundwater discharge: a source of nutrients,
metals, and pollutants to the Coastal Ocean. Treatise Estuarine and Coastal Science, 4,
205-234. https://doi.org/10.1016/B978-0-12-374711-2.00410-1

Kroeger, K. D., Swarzenski, P. W., Greenwood, W. J., & Reich, C. (2007). Submarine
groundwater discharge to tampa bay; nutrient fluxes and biogeochemistry of the coastal
aquifer. Marine Chemistry, 104(1-2), 85-97.
https://doi.org/10.1016/j.marchem.2006.10.012

Kroeger, T., & Casey, F. (2007). An assessment of market-based approaches to providing
ecosystem services on agricultural lands. Ecological Economics, 64(2), 321-332.
https://doi.org/10.1016/j.ecolecon.2007.07.021

Lian, J., Xu, H., Xu, K., & Ma, C. (2017). Optimal management of the flooding risk caused by
the joint occurrence of extreme rainfall and high tide level in a coastal city. Natural
Hazards, 89(1), 183-200. https://doi.org/10.1007/s11069-017-2958-4

MDNR (2020). Why Groundwater Levels Change. Missouri Department of Natural Resources.
https://dnr.mo.gov/document-search/why-groundwater-levels-change-pub2884/pub2884

Moore, W. S. (1996). Large groundwater inputs to coastal waters revealed by 226Ra
enrichments. Nature, 380(6575), 612-614. https://doi.org/10.1038/380612a0

61


https://doi.org/10.1016/j.gca.2005.10.019
https://doi.org/10.1016/j.apradiso.2006.10.005
https://doi.org/10.1017/CBO9780511780745
https://doi.org/10.1029/2005GL025449
https://doi.org/10.1016/j.jhydrol.2022.12744
https://doi.org/10.1021/es010804u
https://doi.org/10.1016/B978-0-12-374711-2.00410-1
https://doi.org/10.1016/j.marchem.2006.10.012
https://doi.org/10.1016/j.ecolecon.2007.07.021
https://doi.org/10.1007/s11069-017-2958-4
https://dnr.mo.gov/document-search/why-groundwater-levels-change-pub2884/pub2884
https://doi.org/10.1038/380612a0

Moore, W. S., & Arnold, R. (1996). Measurement of 223Ra and 224Ra in coastal waters using a
delayed coincidence counter. Journal of Geophysical Research: Oceans, 101(C1), 1321-
1329. https://doi.org/10.1029/95JC03139

Murgulet, D., Douglas, A. R., Spalt, N., & Lee, L. (2016). Using geochemical tracers and radium
isotopes to investigate groundwater and surface water interactions and nutrient fluxes to
coastal embayments. Marine Chemistry, 182, 77-89.

Murgulet, D., Runnels, B., Spalt, N., & Smith, E. (2022). Spatial variability of nutrient and
freshwater inputs into estuaries of the northwest Gulf of Mexico. Science of the Total
Environment, 819, 152022.

Neri-Flores, 1., Moreno-Casasola, P., Peralta-Peldez, L. A., & Monroy, R. (2019). Groundwater
and river flooding: The importance of wetlands in coastal zones. Journal of Coastal
Research, 92(spl), 44-54. https://doi.org/10.2112/S192-006.1

Null, K. A., Knee, K. L., Crook, E. D., de Sieyes, N. R., Rebolledo-Vieyra, M., Hernandez-
Terrones, L., & Paytan, A. (2014). Composition and fluxes of submarine groundwater
along the caribbean coast of the yucatan peninsula. Continental Shelf Research, 77, 38-
50. https://doi.org/10.1016/j.cs1.2014.01.011

Pietrafesa, L., Zhang, H., Bao, S., Gayes, P., & Hallstrom, J. (2019). Coastal flooding and
inundation and inland flooding due to downstream blocking. Journal of Marine Science
and Engineering, 7(10), 336. https://doi.org/10.3390/jmse7100336

Qiu, C., Zhu, J., & Gu, Y. (2012). Impact of seasonal tide variation on saltwater intrusion in the
changjiang river estuary. Journal of Oceanology and Limnology, 30(2), 342-351.
https://doi.org/10.1007/s00343-012-1115-x

Roy, M., Martin, J. B., Cherrier, J., Cable, J. E., & Smith, C. G. (2010). Influence of sea-level
rise on iron diagenesis in an east florida subterranean estuary. Geochimica Et
Cosmochimica Acta, 74(19), 5560-5573. https://doi.org/10.1016/j.gca.2010.07.007

Saba, J. A., Ash, K., & Napton, D. (2024). Assessing the vulnerability of cape coral, florida, to
sea level rise using principal component analysis (2020-2050). International Journal of
Disaster Risk Reduction, 115, 105014. https://doi.org/10.1016/1.1jdrr.2024.105014

Santos, I. R., Eyre, B. D., & Huettel, M. (2012). The driving forces of porewater and
groundwater flow in permeable coastal sediments; a review. Estuarine, Coastal and Shelf
Science, 98, 1-15. https://doi.org/10.1016/j.ecss.2011.10.024

Serafin, K. A., Ruggiero, P., Parker, K., & Hill, D. F. (2019). What's streamflow got to do with it?
A probabilistic simulation of the competing oceanographic and fluvial processes driving
extreme along-river water levels. Natural Hazards and Earth System Sciences, 19(7),
1415-1431. https://doi.org/10.5194/nhess-19-1415-2019

Smith, T. A., Johnson, L. A., & Davis, P. (2020). Septic systems as a source of bacterial
contamination in rural watersheds. Water Quality Research Journal, 55(1), 1-12.

Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Eutrophication; impacts of excess nutrient
inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100(1-
3), 179-196. https://doi.org/10.1016/S0269-7491(99)00091-3

TCEQ (2018). Matagorda Bay Basin Highlights Report. Texas Commission on Environmental
Quality.

Texas Geological Survey (2022). Geological Maps of Texas Coastal Regions.

TWRI (2017). Texas Bays and Estuaries. Texas Water Resources Institute.

TWRI (2017). Tres Palacios Creek Watershed Protection Plan. Texas Water Resources Institute.

62


https://doi.org/10.1029/95JC03139
https://doi.org/10.2112/SI92-006.1
https://doi.org/10.1016/j.csr.2014.01.011
https://doi.org/10.3390/jmse7100336
https://doi.org/10.1007/s00343-012-1115-x
https://doi.org/10.1016/j.gca.2010.07.007
https://doi.org/10.1016/j.ijdrr.2024.105014
https://doi.org/10.1016/j.ecss.2011.10.024
https://doi.org/10.5194/nhess-19-1415-2019
https://doi.org/10.1016/S0269-7491(99)00091-3

USDA Natural Resources Conservation Service (2023). General Soil Map of Texas. Natural
Resources Conservation Service.

USGS (2022). Geologic and Lithologic Mapping of Coastal Plains. U.S. Geological Survey.

Webster, 1. T., Hancock, G. J., & Murray, A. S. (1995). Modelling the effect of salinity on radium
desorption from sediments. Geochimica Et Cosmochimica Acta, 59(12), 2469-
2476. https://doi.org/10.1016/0016-7037(95)00141-7

Wei, Y., Chen, Y., Cao, X., Xiang, M., Huang, Y., & Li, H. (2024). A critical review of
groundwater table fluctuation: Formation, effects on multifields, and contaminant
behaviors in a soil and aquifer system. Environmental Science & Technology, 58(5),
2185-2203. https://doi.org/10.1021/acs.est.3c¢08543

Wei, Y., Xu, X., Zhao, L., & Cao, X. (2023). Numerical modeling investigations of colloid
facilitated chromium migration considering variable-density flow during the coastal
groundwater table fluctuation. Journal of Hazardous Materials, 443, 130282-130282.
https://doi.org/10.1016/j.jhazmat.2022.130282

Wolfe, W. W., Murgulet, D., Gyawali, B., & Sterba-Boatwright, B. (2023). Modeling time series
radon inventory and constraints on the submarine groundwater discharge mass balance of
a well-mixed, highly dynamic estuary. Journal of Hydrology (Amsterdam), 625, 130065.
https://doi.org/10.1016/j.jhydrol.2023.130065

Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., Van Cleemput, O., Berglund,
M., & Boeckx, P. (2009). Present limitations and future prospects of stable isotope
methods for nitrate source identification in surface- and groundwater. Water Research,
43(5), 1159-1170. https://doi.org/10.1016/j.watres.2008.12.048

63


https://doi.org/10.1016/0016-7037(95)00141-7
https://doi.org/10.1021/acs.est.3c08543
https://doi.org/10.1016/j.jhazmat.2022.130282
https://doi.org/10.1016/j.jhydrol.2023.130065
https://doi.org/10.1016/j.watres.2008.12.048

4. TASK 2: MEASUREMENT OF FECAL INDICATOR BACTERIA
Prepared by Dipti Anik Dhar, Kiran Kumar Vadde, and Vikram Kapoor, Ph.D.

4.1. Executive Summary

The purpose of the study/Task-2 was to apply microbial source tracking (MST)
approaches to evaluate fecal pollution inputs along the Texas Gulf Coast. Quantitative PCR-
based methods were applied for one general fecal marker (Enterol), two animal-associated
assays (BacCan and GFD), and one human-associated marker (HF183). For comparison, one
conventional fecal indicator bacteria (Enterococci) was measured by following a culture-based
quantification method. Culture-based enterococci was present in all surface water samples in
high concentration, whereas well and pore water samples showed low detection frequency with
low concentration. 79% of surface water samples exceed the safe condition for marine
recreational water. Among 4 gPCR markers, Enterol showed comparatively higher concentration
and detection frequency in wells, surface water, and pore water (88% of samples). The sole use
of these general markers doesn’t give us a clear understanding of the hosts and sources of fecal
pollution in the Texas Gulf Coast. Among the host-specific markers, the highest level of gull
markers, GFD, was observed, suggesting a higher percentage of fecal pollution was coming from
the bird population on the coast. The next predominant marker was BacCan, which can be
introduced by unrestrained dogs along the coast. Human-derived fecal pollution was detected as
well though the level and detection of the marker was lowest.

4.2. Background

Identifying the types of sources that contribute to bacteria in water systems is key when
developing strategies to reduce bacteria and other pollution levels in surface and groundwater, as
well as evaluating their potential impact on the environment. In coastal regions where sources
are not easily known or understood, microbial source tracking (MST) techniques can provide an
opportunity to analyze water samples in a way that identifies the source of fecal bacteria in the
sample, from simply identifying whether the source is human or animal to, at times, identifying
the source down to the species (e.g., cow, dog, deer). The molecular methods used for MST most
commonly include the analysis of genetic material (e.g., deoxyribonucleic acid [DNA] or
ribonucleic acid [RNA]) to determine the source (human or animal) that contributed to the fecal
bacteria observed in the water sample. The underlying assumption of these types of MST
methods is that there are genetic sequences unique to bacteria from a particular host that can be
used to identify where the bacteria originated.

As an integral part of the project, Task 2 sought quantitative data on fecal pollution to
provide a comprehensive view of the study area. We were looking to identify the potential
sources of fecal contamination such as (1) humane waste/ runoft through on-site sewage facilities
(OSSFs), (2) animal waste (domesticated and unrestrained animals regarding recreation), and (3)
wildlife waste (Seagulls and birds). The potential impact of microbial contamination was
assessed by conventional fecal indicator bacteria and advanced molecular MST markers.
Culturable Enterococci, as well as general qPCR assay Enterol (General Enterococcus) and host-
specific qPCR assays such as HF183 (human), BacCan (Canine), GFD (Gull), were used to
identify the presence and the abundance of fecal contamination along the Texas Gulf Coast. The
information from Task 2 will be integrated with other project tasks to develop a comprehensive
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scenario with detailed geological and environmental factors that influence the sources,
abundance, and transport of fecal contamination along the Texas Gulf Coast.

4.3. Methods

2.3.1. Sampling Sites and Sample Collection

The present study was conducted at twenty locations along the Texas Gulf Coast in
Chambers, Brazoria, Galveston, and Matagorda County, Texas, USA. Each location has a
different combination of well, surface, and pore water samples. Water samples were collected for
19 months from November 2021 to May 2023 from each site and analyzed for Fecal Indicator
Bacteria (FIB) and Microbial Source Tracking (MST) markers. Water samples were collected in
sterile 1 Liter Nalgene bottles (Rochester, NY) as previously mentioned (Hinojosa et al., 2020)
and transferred to UTSA Laboratory in ice coolers where the water samples were immediately
processed for Enterolert test and filtration.

4.3.2. Enterolert Test

Enterolert Test kit by IDEXX (Westbrook, Maine) was used to enumerate Enterococci
levels in water samples. 100 ml of water sample was transferred in 250 ml sterile Erlenmeyer
Flask using sterile serological pippete. The reagent was added to samples and mixed properly by
shaking the flasks until the powder dissolved completely. The sample mixtures were poured into
QuantiTray/2000 and sealed with QuantiTray Sealer Plus. The trays were incubated at 41 + 0.5
°C for 24 hrs. After incubation, the trays were marked under UV light. The wells with blue
fluorescence were marked as positive, whereas no fluorescence indicated negative. The number
of positive large and small wells were counted, and the MPN Table provided with Quanti
Tray/2000 was referred to obtain the concentration of enterococci in MPN/100ml.

4.3.3. Filtration and DNA Extraction

300 ml of each water sample was filtered in duplicate on a vacuum manifold through
0.45-um-pore-size, 47 mm diameter polycarbonate membranes (Pall Corporation, Ann Arbor,
Michigan) and immediately stored at -80°C until DNA extraction. Sterile de-ionized water
controls were filtered with each sampling event to check for cross-contamination during sample
processing. Before DNA extraction, the filtered samples were thawed on ice. The genomic DNA
was extracted using DNeasy PowerLyzer PowerSoil Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s protocol. Extraction blank was processed with all batches of extraction to
check carryover contamination. DNA concentration and purity were checked with a Nanodrop
spectrophotometer (Thermo Scientific, Wilmington, DE). All extracted DNA samples were
stored in -20°C until further qPCR analysis.

4.3.4. qPCR analysis

The presence and distribution of four MST markers (3 TagMan assays and 1 SYBR
Green assay) were measured to identify fecal contamination in Texas Gulf Coast waters.
Extracted DNA from collected coastal water samples were analyzed as the templates (Table 4.1)
for following MST markers using previously developed qPCR assays; human-associated
Bacteroidales (HF183), canine-associated Bacteroidales (BacCan), Enterococcus (Enterol), and
avian-associated fecal markers (GFD). All the qPCR assays were carried out using CFX96 Touch
Real-Time PCR Detection System (Bio-Rad, Hercules, CA) and all gPCR reactions were
performed with 20 pL as reaction volume. HF183 and Enterol were probe-based and each qPCR
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reaction mixture contained 10 pL of iTaq™ Universal Probes Supermix (Bio-Rad, Hercules,
CA), 1 uM each of respective forward and reverse primers, 80 nM of the respective probe and 2
uL of template DNA. Probe-based assay BacCan has same reaction mixture except it contains
0.4 uM each of respective forward and reverse primers. GFD is a SYBR Green based assay
where the reaction mixture contains 10 pL of SsoAdvanced Universal SYBR® Green Supermix
(Bio-Rad, Hercules, CA), 0.1 puL each of forward and reverse primers and 2 pL of template
DNA. The qPCR reaction was run in duplicate for all DNA templates. The thermal protocol of
qPCR amplification was performed following an initial denaturation at 95 °C for 2 min, followed
by 40 cycles of 15 s at 95 °C and 60 s at 60 °C (except Enterol and GFD, which were performed
at 54 °C and 57 °C respectively). The GFD assay involved conducting a melting curve analysis,
where the temperature was increased from 60 °C to 95 °C at a rate of approximately 0.4 °C per
minute. This analysis was performed after gPCR amplification to confirm the specificity of the
amplified products. Samples were considered positive if their melting points matched the melting
point of the qPCR standards within a tolerance of 0.5 °C.

A standard curve with concentrations spanning the range from 10° to 10 gene copies per
reaction, with two duplicates was prepared by using serially diluted plasmids standards
containing the target sequence for each assay purchased from Integrated DNA Technologies
(IDT, Skokie, IL). The qPCR data were analyzed using Bio-Rad's CFX Manager Software
(version 3.1). Based on standard curve, the targeted marker copy number per 100 mL of water
was calculated for all samples. Cross contamination was checked by including extraction blanks
and three no template controls (NTC) in qPCR each plate. The amplification efficiency for each
run was calculated as per instrument manufacturer’s instructions (Bio-Rad). The absolute gene
copies of the markers were determined by calculating the average concentration of duplicate

reactions and expressing the results as logio gene copies per 100 mL of water.

Table 4.1. Primers/probes for the PCR assays used in the study.

(Enterol)

ENC854R: CAGTGCTCTACCTCCATCATT
GPL813TQ: 6FAM-
TGGTTCTCTCCGAAATAGCTTTAGGGCTA-TAMRA

Assay Primer/probe Sequence (5'-3") Reference
Human-specific HF183: ATCATGAGTTCACATGTCCG Green et al.,
Bacteroidales BacR287: CTTCCTCTCAGAACCCCTATCC 2014
(HF183) BacP234MGB: 6FAM--CTAATGGAACGCATCCC-MGB
Dog Bacteroidales BacCan- 545f: GGAGCGCAGACGGGTTTT Kildare et al.,
(BacCan) BacUni-690r: CAATCGGAGTTCTTCGTGATATCTA 2007
BacUni-656p: 6-FAM-TGGTGTAGCGGTGAAA-TAMRA-
MGB
Avian-associated F: TCGGCTGAGCACTCTAGGG Greenetal.,
marker R: GCGTCTCTTTGTACATCCCA 2012
(GFD)
General Enterococcus ECST748F: AGAAATTCCAAACGAACTTG Ludwig &

Schleifer, 2000

4.3.5. Data Analysis

All bacteria data was transformed into logio scale to generate normally distributed data
sets and reduce the influence of broad range of observation. Cultured enterococci enumerated
with IDEXX has Limit of Detection (LOD) as <1 MPN/100ml and above detection limit as
>2419.6 MPN/100ml which have been reported as 0 and 2419.6 MPN/100ml respectively. We

66



maintained Limit of Quantification (LOQ) as 10 copies/100ml per qPCR reaction for all four
MST markers. The values below 10 copies/100ml were reported as no detection and were
assigned a value of one before log transformation. Statistical analyses were performed in R-
studio (version 2024.04.1) software. Based on non-normality of datasets, a Kruskal-Wallis test
was run to determine if differences between marker concentrations among sampling sites were
statistically significant. Analyses were considered significant at alpha level of 0.05 (95% of
confidence level). Boxplots were constructed in GraphPad Prism (Version 10.3.0(507)). Lower
and upper box boundaries indicate the first and third quartiles. The median is given as the
horizontal black line within the box. Upper and lower whiskers represent the maximum and
minimum value respectively.

4.3.6. Quality Assurance/Quality Control

All environmental samples were collected and handled according to procedures outlined
in the EPA field sample collection protocol - EPA Method 1669 (USEPA, 1996), including
labeling of containers and logging of sample information on field logs. All samples were
transported on ice and were accepted in good condition, according to protocol. Samples were
logged in upon arrival at the laboratory, and a unique sample number was given for identification
purposes. The following quality control activities were conducted during the PCR laboratory
analysis: filtration, positive controls, no template controls, method accuracy, and specificity.

4.4. Results and Discussion

4.4.1. Performance of qPCR assays

Each qPCR plate contained a standard curve in duplicate generated from a serial dilution
of known target copies per reaction, which were used to determine the amplification efficiencies
and linear ranges of the qPCR assays. The linear range of quantification for all qPCR assays was
between 10! and 10° copies per reaction. The qPCR amplification efficiencies for all the assays
ranged from 85.8 to 114.9 %, and the R2 values were greater than 0.941 (Table 4.2). DNA
extraction controls and no template controls (three per qPCR plate) were run to check cross-
contamination, and the absence of contamination in the qPCR experiments was confirmed.

Table 4.2. Average standard curve gPCR amplification efficiencies and R2 values obtained
through BioRad CFX Manager 3.1 software.

Assay Amplification Efficiency (%) R?
Human-associated Bacteroidales (HF183) 98.60 0.989
Dog-associated Bacteroidales (BacCan) 94.78 0.979
Avian-associated marker (GFD) 99.79 0.984
General Enterococcus (Enterol) 100.4 0.985

4.4.2. Detection of Culture-based Enterococci

Enterococci was enumerated from all type of water samples (207 well water samples, 335
surface water, and 226 pore water samples) collected from December 2021 to May 2023. Table
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4.3, Table 4.4, and Table 4.5 show the spatial detection frequency of enterococci and Table 4.6,
Table 4.7, and Table 4.8 show the temporal detection frequency of enterococci with similar
categories published in the beach monitoring website Texas Beach Watch managed by Texas

General Land Office (TGLO). The website has color coded Beach Advisory levels; Low,

Medium and High with the criteria of less than 35 MPN/100ml, 35 to 104 MPN/ 100mL, and
more than 104 MPN/100 mL, respectively. High Level denotes that the concentration of
enterococci exceeds the EPA recreational water quality standard. The samples from well, surface
and pore water had considerably different detection patterns throughout the study. Enterococci

was detected in all surface water samples with high concentration whereas well and pore samples
had low concentration with low detection frequency.

Table 4.3. Spatial Detection frequency of Enterococci enumerated by IDEXX Enterolert kit in

well Samples.

Sites W1l |W2 W3 |W4 |W5 | W7 | W8 | W9 | W10 | W11 | W13 | W14

No. of Samples 17 |15 |18 18 |18 18 |13 |18 |18 18 18 18

Beach Criteria

Advisory (MPN/ Percentage of positive samples fall in the criteria

Level 100mL)

Low <35 94 |6 100 |94 | 100 |6 54 |78 |94 83 94 72

Medium 35t0104 | 6 27 |0 6 0 44 |8 22 |6 0 0 17
e >104 0 [67 Jo Jo Jo [s0 [3 Jo o 17 6 11
Table 4.4. Spatial Detection frequency of Enterococci enumerated by IDEXX Enterolert in
Surface Samples.

Sites S1 S2 S4 S5 S6 S6B S8 S9 S10 S11

No. of Samples 17 18 18 18 17 17 18 18 18 18

Beach Criteria

Advisory | (MPN/ Percentage of positive samples fall in the criteria

Level 100mL)

Low <35 29 0 6 6 0 6 0 6 0 0

Medium 35t0 104 6 33 28 28 53 41 28 28 17 17

>104 65 67 66 66 47 53 72 66 83 83

Sites S12 S12B | S14 S15 S16 S17 S18 | S19 S20

No. of Samples 18 16 18 18 18 18 17 17 18

Beach Criteria

Advisory | (MPN/ Percentage of positive samples fall in the criteria

Level 100mL)

Low <35 0 0 0 0 0 0 0 0 0

Medium 3510 104 0 6 17 6 6 0 6 24 11

>104 100 94 87 94 94 100 94 76 89

Table 4.5. Spatial Detection frequency of Enterococci enumerated by IDEXX Enterolert in Pore

Samples.
Sites P2 P4 P5 PWB5 P8 P9 P10 P11
No. of Samples 18 18 18 9 18 18 18 18
Beach Criteria
Advisory (MPN/ Percentage of positive samples fall in the criteria
Level 100mL)
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Low <35 78 61 72 56 50 67 67 56

Medium 3510 104 16 33 28 44 44 33 28 39
DG >104 6 6 0 0 6 0 5 5

Sites P14 P15 P16 P18 PWB18 | P19 PWB19

No. of Samples 18 11 14 17 9 15 7

Beach Criteria

Advisory (MPN/ Percentage of positive samples fall in the criteria

Level 100mL)

Low <35 28 73 50 65 67 74 72

Medium 3510 104 61 18 29 23 33 13 14
G >104 11 9 21 12 0 13 14

Less contamination was observed with IDEXX Enterolert Kit in well water samples than
surface and pore water samples throughout the study. The concentration of enterococci ranged
from below detection limit (< 1 MPN/100 mL) to above detection limit (> 2419.6 MPN/100
mL). Statistically significant difference in enterococci concentration across the study sites was
found (Kruskal-Wallis test; p <0.05). Most of the samples (154 out of 207) fell into Low level of
enterococci from different well sites. 48 out of 207 well water samples (23%) showed no
detection or < 1 MPN/100 mL of enterococci. The samples from W1, W3, W4, W5, W9, and
W10 fell into low and medium level which indicates these sites never exceeded the recreational
water quality throughout the study. The concentration of enterococci in these sites ranged from <
1 MPN/100 mL to 65 MPN/100 mL. W3 and W5 contained 100% of the samples in low level
for 18 months. High percentage of detection in High level or above recreational water quality
was observed in W2, W7, and W8 (67%, 50%, and 38% respectively). Similarly, W11, W13, and
W14 showed low percentage of frequency in High level of enterococci (17%, 6%, and 11%
respectively). Out of 7 well samples in Brazoria County, all well sites contained enterococci
concentration in High level except W9 and W10 indicating the wells encountered fecal
contamination. Well sites in Galveston turned out less contaminates except W2 which has highest
detection frequency in High Level. Chambers county has only one well site and it is
comparatively less contaminated.

100% of samples collected from Surface water sites were tested positive for cultured
enterococci (Table 3(b)). There was statistically significant difference in enterococci
concentration across the study sites for surface water samples (Kruskal-Wallis test; p < 0.05).
Unlike well and pore water samples, surface water samples showed higher concentration of
enterococci in all sites throughout the study period ranging from 11.8 MPN/100 mL to above
detection limit (> 2419.6 MPN/100 mL). Only 21% of samples (71 out of 335 surface samples)
met the threshold for marine recreational water. Elevated detection frequency (47% to 100%)
was observed for High criteria of Beach Advisory Level indicating regular heavy fecal
contamination throughout the study period. Site S12 and S17 were the most contaminated sites
as they did not meet the criteria over 18 months of sampling event. S12B, S15, S16, and S18
exhibited high fecal contamination due to showing only one day of safe condition for swimming
in Medium Criteria. Overall, the surface water sites in Chambers County, Galveston County and
Brazoria County showed lower percentage of detection frequency in High criteria of Beach
Advisory Level comparing with Matagorda County and the sites near Quintana Park in Brazoria
County.
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Enterococci was detected in 98% of the samples from pore water sites ranging from
below detection limit (< 1 MPN/100 mL) to above detection limit (> 2419.6 MPN/100 mL).
There was no statistically significant difference among pore water sites (Kruskal-Wallis test; p >
0.05). Unlike well water samples, only 2% of pore water samples showed no detection or below
detection limit throughout the study period. For all sites, higher detection frequency was
observed in Low (28 % to 78%) and Medium (13% to 61%) level of contamination The samples
from P5, PWBS, P9, and PWB18 did not exceed the maximum acceptable level for enterococci

in recreational water with a concentration ranging from < 1 MPN/100 mL to 100.6 MPN/100
mL. Only 1 sample throughout the study period exceeded the maximum allowable level in site
P2, P4, P8, P10, P11, P15, and PWB19B. P14, P16, P18, and P19 had more than one sample
which did not meet the acceptable water quality for recreational marine water.

Table 4.6. Temporal Detection frequency of Enterococci enumerated by IDEXX Enterolert in well

water Samples.

. Dec Jan Feb Mar Apr May Jun Jul Aug
Sampling 21 |22 |2 |22 |22 |2 2 |2 |2
No. of Samples 12 12 12 12 12 12 12 12 12

. Criteria
Beach Advisory (MPN/ Percentage of positive samples fall in the criteria
Level
100mL)
Low <35 50 59 67 75 75 75 92 83 75
Medium 35to 104 17 8 8 0 8 8 8 17 17
R 104 33 33 25 25 17 17 0 0 8
sampling Sep Oct Nov Dec Jan Feb Mar Apr May
22 22 22 22 23 23 22 22 22
No. of Samples 12 12 12 10 10 10 11 12 10
Beach Advisory Criteria . . Lo
(MPN/ Percentage of positive samples fall in the criteria
Level
100mL)
Low <35 83 67 67 80 90 90 73 67 80
Medium 3510 104 17 25 0 10 10 10 9 17 10
>104 0 8 33 10 0 0 18 17 10

Table 4.7. Temporal Detection frequency of Enterococci enumerated by IDEXX Enterolert in
surface water Samples.

sampling Dec Jan Feb Mar Apr May Jun Jul Aug
21 22 22 22 22 22 22 22 22
No. of Samples 17 19 19 19 19 18 19 19 18
. Criteria
Eeach Advisory (MPN/ Percentage of positive samples fall in the criteria
evel
100mL)
Low <35 0 0 5 5 0 0 0 0 6
Medium 3510 104 18 26 32 26 26 11 11 0 22
>104 82 74 63 69 74 89 89 100 72
sampling Sep Oct Nov Dec Jan Feb Mar Apr May
22 22 22 22 23 23 22 22 22
No. of Samples 19 19 18 19 19 19 18 19 18
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Criteria

Beach Advisory (MPN/ Percentage of positive samples fall in the criteria
Level
100mL)
Low <35 11 0 0 5 0 5 6 5 0
Medium 3510 104 21 0 28 32 16 32 22 11 0
>104 68 100 72 63 84 63 72 84 100

Table 4.8. Temporal Detection frequency of Enterococci enumerated by IDEXX Enterolert in
ore water Samples.

sampling Dec Jan Feb Mar Apr May Jun Jul Aug
21 22 22 22 22 22 22 22 22
No. of Samples 12 13 14 15 11 10 12 12 12
Beach Advisory Criteria . . o
(MPN/ Percentage of positive samples fall in the criteria
Level
100mL)
Low <35 84 77 57 73 55 20 83 42 66
Medium 35to0 104 8 23 29 27 45 70 17 33 17
>104 8 0 14 0 0 10 0 25 17
sampling Sep Oct Nov Dec Jan Feb Mar Apr May
22 22 22 22 23 23 22 22 22
No. of Samples 13 14 10 9 15 15 12 13 14
Beach Advisory Criteria . . .
Level (MPN/ Percentage of positive samples fall in the criteria
100mL)
Low <35 54 57 50 56 60 40 75 85 64
Medium 3510 104 38 29 50 44 27 53 25 15 29
>104 8 14 0 0 13 7 0 0 7

Detection frequency in well, surface, and pore water samples was considered for
temporal pattern in this study throughout the study period (Tables 4a, 4b, 4c). There was no
statistically difference of the concentration of Enterococci in 18 months of well samples water
(Kruskal-Wallis test; p > 0.05). All well samples contained enterococci under the threshold value
in June 2022, July 2022, September 2022, April 2022, February 2023. The other 13 months of
samples contained varied frequency in High Criteria of Enterococci (8% to 33%). Surface water
sites showed statistically significant difference within 18 months of samples (Kruskal-Wallis test;
p <0.05). Elevated detection frequency was observed in High criteria (63% to 100%) in every
month throughout the study period indicating all the sites had unsafe level of enterococci
concentration. In July 2022, October 2022, and May 2022, 100% samples from 19 surface water
sites contained enterococci concentration higher than the maximum allowable level for
recreational marine water. There was statistically significant difference in enterococci
concentration across 18 months of pore water samples (Kruskal-Wallis test; p < 0.05). The higher
percentage of detection frequency in Low and Medium criteria for pore water samples was an
indication of less fecal contamination throughout the study period. Safe level of enterococci was
detected in all pore water samples from the month January 2022, March 2022, April 2022, June
2022, November 2022, December 2022, March 2023, and April 2023.
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4.4.3. Detection of Fecal Contamination using MST Markers

From November 2021 to May 2023, 807 water samples from different well, surface and
pore water sites were analyzed for four MST markers to characterize fecal pollution sources and
trends along Texas Gulf coast. Among four MST markers, enterococci were found most
frequently (89% of samples) using Enterol assay. Among host-specific markers, human feces
associated marker HF183 was detected in less than 5% of samples, whereas avian marker GFD
was found in majority of the samples (88% of samples). 23% samples were positive for canine
fecal marker BacCan indicating that the study area received fecal pollution from dog sources
throughout the study period. Detailed findings for each marker are presented and discussed
below.

4.4.3.1. Detection of general fecal marker

Enterococci showed the highest concentration among all the qPCR markers across the
sampling sites (Figure 4.1). Enterol was detected in 206 out of 219 well water samples collected
from 12 well water sites. The concentration of enterococci using the marker Enterol in well
samples was statistically different (Kruskal-Wallis test; p < 0.05) with a range of 2.27 Log10
Copies/100 ml to 7.26 Log10 Copies/ 100 ml. The mean value fluctuated from 1.7 Log10
Copies/100 ml to 4.93 Log10 Copies/100 ml. 100% samples were positive for the marker in W3,
W4, W5, W7, W8, W10, W11 and W13. Several samples from W1 did not show the presence of
Enterol.

There was statistically significant difference in the concentration of Enterol detected in
surface water in different surface water sites along Texas Gulf Coast (Kruskal-Wallis test; p <
0.05). Figure 4.2 shows the concentration of Enterol with 98% presence in surface water
samples (345 out of 351 surface water samples). Mean value of Enterol varied in a close range
from 3.32 Log10 Copies/100 ml to 4.47 Log10 Copies/100 ml. The minimum and maximum
positive value for Enterol were 2.23 Log10 Copies/100 ml and 6.02 C both collected from S8.

The samples yielded significantly different amplification for Enterol across the pore
water sites (Kruskal-Wallis test; p < 0.05). 167 out of 237 pore water samples (70%) were
positive for Enterol throughout the study. The abundance of Enterol varied from 2.23 Logl0
Copies/100 ml to 6.99 Logl10 Copies/100 ml. P2, P14, and P16 frequently showed high
abundance of Enterol with more than 80% detection frequency.
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Figure 4.1. Spatial variation of enterococci concentration using MST marker Enterol
throughout the study period.

The temporal distribution of Enterol in well, surface water, and pore water is
presented in Figure 4.2. A statistically significant difference was found throughout 19
months of the study period while analyzing well water samples, surface water samples, and
pore water samples separately (Kruskal-Wallis test; p < 0.05). The concentration of Enterol
found higher in summertime while they are lower in winter and spring time. The highest
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mean abundance of Enterol (5.05 Log10 Copies/100 ml) in well samples was found in July
2022 whereas the lowest mean (2.72 Log10 Copies/100 ml) occurred in February 2023. The
lowest and highest average value of Enterol in surface water were 3.00 and 4.96 occurred in
January 2023 and July 2022 respectively. In pore water, lowest mean (0.81 Log10
Copies/100 ml) of Enterol concentration occurred in March 2023 and highest mean (3.99
Log10 Copies/100 ml) was detected in April 2022.

Overall, high detection frequency of general fecal marker Enterol indicates the
presence of fecal contamination at all types of sites along Texas Gulf Coast. Enterococci has
been reported to survive and grow outside of human and animal gastrointestinal system in a
wide variety of environments. Therefore, presence of Enterol doesn’t give us sufficient
information of specific source of fecal contamination.
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Figure 4.2. Temporal variation of enterococci concentration using MST marker Enterol across
the study sites.

4.4.3.2. Detection of human-associated marker

Human waste can be introduced in various aquatic environments from old and failing on-
site sewage systems (OSSS), stormwater runoff, public portable washrooms adjacent to beach
access, boat and fishing ramps, RV camp sides. Among three host-associated MST markers,
human-associated marker HF183 was detected least frequently across Texas Gulf Coast
throughout the study. 34 out of 807 water samples (4%) collected from collected from well,
surface, and pore water sites contained HF183. The spatial and temporal distribution of HF183 is
shown in Figure 4.3 and Figure 4.4. The abundance of HF183 was not statistically significant in
well, surface water, and pore waters (Kruskal-Wallis test; p > 0.05). The marker HF183 was
more prevalent in surface water (7%) than well (3%) and pore (1%) water. The concentration
varied from 2.24 Log10 Copies/100 ml to 3.32 Log10 Copies/100 ml in well water. W1, W3,
W4, W5, W7, W10, and W11 never showed any detection of HF183. For surface water, S10
showed highest detection frequency (21%) for HF183. The concentration of HF183 ranged from
2.38 Log10 Copies/100 ml to 4.84 Log10 Copies/100 ml in site S8. Surface water site S5, S6B,
S18, S19, and S20 never displayed the presence of HF183. All surface water sites from Brazoria
were positive for human associated marker. HF183 was detected only once in each site of P2 and
PWBS and the mean value of the concentration was 2.49 Log10 Copies/100 ml. No detection in
other pore water sites indicated no human fecal contamination in pore water.

No month particularly showed statistically significant difference in abundance of HF183
for well water and pore water samples (Kruskal-Wallis test; p > 0.05). 19 months sampling
exhibited significant difference in concentration of HF183 for surface water (Kruskal-Wallis test;
p <0.05). In well samples, HF183 was detected mostly during winter and spring/early spring
which could be contributed by septic systems of rental houses near Gulf Coast during vacation
periods. Abundance of HF183 in surface water did not show any significant pattern. All six
months from December 2022 to May 2023 could be a concerning event. Higher detection
frequency in surface water was found in July 2022, April and May 2023. Overall, majority of the
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samples exhibited no detection of human-specific markers suggesting human fecal pollution was
not severe compared to other hosts.
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Figure 4.3. Spatial variation of Human fecal contamination using MST marker HF183
throughout the study period.
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4.4.3.3. Detection of canine-associated marker

Similar to other markers, Canine fecal marker BacCan was detected for frequently in
surface water (40% of samples) than well (19%) and pore water (3%) (Figure 4.5). The variation
of the concentration of BacCan was statistically significant in well water samples (Kruskal-
Wallis test; p < 0.05) with a range from 2.30 Log10 Copies/100 ml and 5.19 Log10 Copies/100
ml. Most contaminated wells were W2, W3, and W4 located in Galveston County. W2
encountered consistent dog pollution with a mean concentration of 3.85 Log10 Copies/100 ml.
W1, W7, W10, W11, W13 were most clean well sites with no detection of BacCan throughout
the study.

All surface water sites received dog pollution in various detection frequency (11% to
89%) at some point throughout the study period. Statistically significant difference was found in
the level of BacCan marker in surface water sites (Kruskal-Wallis test; p < 0.05). The
concertation of BacCan varied from 2.22 Log10 Copies/100 ml to 5.37 Log10 Copies/100 ml.
The most frequent dog fecal contamination occurred in S2 with a mean value of 2.71 Log10
Copies/100 ml. Considerable contamination was detected in S2, S4, S5, S10, and S17 with more
than 50% detection of BacCan marker.

No significant difference in the level of BacCan marker was yielded in pore water
samples (Kruskal-Wallis test; p > 0.05). The marker was detected only once in P2, P4, P5,
PWBS, P8, and PWB19 with a range from 2.25 Log10 Copies/100 ml to 4.22 Log10 Copies/100
ml.

Unlike well and pore water samples, the concertation of BacCan in surface water varied
significantly over 19 months of sampling (Kruskal-Wallis test; p < 0.05). Relatively high
concentration for BacCan was observed in Spring and winter time in all type of sites (Figure
4.6). Surface water encountered dog contamination more frequently in Winter months. In Texas,
the outside temperature is more favorable during these times. Pet owners might spend
recreational time at rental houses and at the beach. High levels of dog fecal waste in Texas Gulf
Coast could be associated with large number of unrestrained dog population visiting and
engaging seasonal recreational activities.

78



[=2]
]

H
1

N
1

Conc. (Logqo Copies/100 mL)

o

T T T T 1 T T T 1
w1 w2 w3 w4 W5 w1 w8 W9 W10 W11 W13 W14

Well sites

Conc. (Log4o Copies/100 mL)

0 T T T T T T T T T 1 T T T T T T T T T
§1 82 S4 S5 S6 S6B S8 S9 810 S11 S12 S12B S14 815 S16 S17 S18 S19 S20

Sites

[3,]
]

E-N
1

w
1

N
1

-
1

Conc. (Log4 Copies/100 mL)

o

1 1 1 T T T T T T T T T 1
P2 P4 P5 PWB5 P8 P9 P10 P11 P14 P15 P16 P18 PWB18 P19 PWB19

Pore water sites

Figure 4.5. Spatial variation of Canine fecal contamination using MST marker BacCan
throughout the study period.

79



Well Water Sites

f £Z Je

-€¢ uer

— A
p—————+12Z NN
f—————¢22¥0

I Zz des

} Zz bny

p————t2zInr
p—t2zzunp

b—«—Lzz fep

t zz 1y

I e

1 T T 1
© < ] o

(w ooL/serdog 960o7) “ouon

T fezoed
HIT— fee=a
——f Jawo
_|m|NN Bny
T Fam

“ zzunp

_I_ -2 few

“ g 1dy

Surface water

e ——— YA |

— e
HI——Ffzever
T
—{ N

| T T
© < o~ =)

(w go1/sardo) 046o7) "auod

Porewater Sites

¢z Aey
¢ 1dy
€2 Je

—€¢ 34

€Z uer
-22 920
—22 AON
~22 120
-22 deg
-2 bny
-2z It

-zz unp
-22 Aely
-2 1dy
-2z Jel

~2Z 9°d

p———1-22 uer

b 112 22a

j——————F1Z AON

I
©

1
<

1
N

o

(w oo}/sardog 0+607) "auon

Month

Figure 4.6. Temporal variation of Canine fecal contamination using MST marker BacCan
80

across study sites.



4.4.4.4. Detection of avian-associated marker

Among the host-specific fecal markers, GFD was consistently present in all types of sites
(Figure 4.7). Texas is in the migratory route for various species of birds flying during fall/winter
seasons, especially in coastal areas due to humid weather. Texas is a residence for all season
birds; therefore, the GFD marker was detected frequently throughout the study. However, the
MST marker GFD is designed for detecting Helicobacter sp., which is present in a wide range of
avian species, including seagulls, waterfowls, and other birds. The concertation of the GFD
marker was observed to be relatively higher in surface water than in well and pore water,
indicating gull feces as a potential source of concern in the Texas Gulf Coast (Figure 4.7).
Temporal concentration varied in a statistically significant manner (Kruskal-Wallis test; p < 0.05)
in all types of samples for 19th-month sampling (Figure 4.8).

The concentration of GFD varied significantly across different well sites (Kruskal-Wallis
test; p < 0.05) with a range of concentration from 2.25 Log10 Copies/100 ml to 5.76 Log10
Copies/100 ml. The mean concentration of the GFD marker ranged from 0.66 Log10 Copies/100
ml to 3.77 Log10 Copies/100 ml. W2, W4, W5, W7, W8, and W10 were the most contaminants
well sites by gull fecal marker showing 100% detection of GFD.

No significant variation in GFD abundance was found in surface water samples (Kruskal-
Wallis test; p > 0.05). High detection frequency was observed in all surface water sites (83% to
100%). The concentration varied from 2.39 Log10 Copies/100 ml to 5.49 Log10 Copies/100 ml
in surface water samples. Except for S1, the concentration of the GFD marker was consistently
prevalent, with a mean concentration of 3.99 Log10 Copies/100 ml to 4.44 Log10 Copies/100
ml.

Statistically significant variation was not observed in pore water samples for the GFD
marker (Kruskal-Wallis test; p > 0.05). The lowest and highest concentrations of GFD were
found both in P18 (2.23 Log10 Copies/100 ml and 5.09 Log10 Copies/100 ml). The mean
concentration of GFD in pore water varied from 1.91 Log10 Copies/100 ml to 3.16 Log10
Copies/100 ml.
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4.5. Conclusion/Recommendation

The following conclusions have been drawn from this study for the study area:

The general marker (enterococci) exhibited highest levels and a similar spatial
distribution pattern across the sampling sites. Among the host-associated markers, low
levels were observed for the human-associated markers and the highest levels for GFD,
suggesting a higher percentage of fecal pollution to be coming from the large bird
populations in the study area.

The predominant sources of fecal contamination identified in the study area were, in
ranked decreasing order of presence: avian including gull, ducks etc., dog and human-
derived.

The concentrations of the GFD genetic marker were relatively higher at all surface water
sites and well water sites suggesting that bird fecal pollution is a major source of concern
for Texas Gulf coast. The canine marker was consistently higher in the surface water sites
as compared to well water sites.

BacCan exhibited higher concentrations during the end of fall and winter and were all
lowest during the summer months.

Data from this study have established a baseline for fecal pollution sources in the study
area and can be used for the recommendation and implementation of best management
practices that can accurately and cost effectively prevent, control, and remediate fecal
pollution events and maintain water quality.

Recommendations for the Texas GLO include:
Secure resources/funding to implement necessary improvements in management
programs and enforcement mechanisms that will mitigate the public health risk by
reducing animal and human-derived sources and other readily controllable sources of
fecal contamination, including:
= Domestic Pet Waste - Education and outreach to homeowners regarding proper
disposal of domestic pet waste.
= Bird Fecal Waste — Identify birds that are polluting the water and develop bird
relocation efforts to reduce hazards associated with large bird populations.
= On-Site Septic Systems
*  Ongoing homeowner education regarding septic system maintenance and
homeowner inspections of septic systems.
» Investigate, identify, and repair or replace problematic septic systems in the
contributing zone.
Improve storm water management programs, including the promotion of Low Impact
Development (LID) such as the reduction of effective impervious surfaces, dispersion of
storm water runoff to vegetated areas, and Best Management Practices that are
appropriate to the site-specific conditions.
Use the results from this study to evaluate current wastewater infrastructure and on-site
septic system management programs and water quality monitoring plans in the recharge
and contributing zones. Re-examine implementation strategies and modify if necessary to
achieve long-term water quality objectives.
Implement a change in drainage architecture which supports a more diverse biological
habitat around the creeks that could produce a reduction in downstream bacterial input.
For example, pouring of concrete channels around the creek to avoid runoff from directly
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Green,

Green,

entering the stream.

Continue outreach (including dissemination of related study results) to the public about
nonpoint source pollutant sources and steps that can be taken to mitigate those sources
that are human-derived and controllable through improved management programs and
enforcement mechanisms that will benefit ecosystem and public health.

Continue emphasis on improving MST methodologies, including efforts that will
encourage accessibility and use of these tools in a streamlined and cost-effective manner.
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5. TASK 3: QUANTIFICATION AND SOURCE TRACKING OF NUTRIENT
INPUTS

Prepared by: Erin Taylor and J. David Felix, Ph.D.

5.1. Executive Summary

This study examines nitrogen loading to coastal waters from Matagorda to Galveston
Island, utilizing stable isotope techniques to identify the sources and processes driving nitrogen
contamination. Over an 18-month period (November 2021 to April 2023), monthly water
samples were collected to measure nitrate, ammonium, and dissolved organic nitrogen
concentrations, along with their isotopic composition, in surface, pore, and groundwater. Nitrate
concentrations in surface (3.4 = 5.2 uM) and porewaters (4.3 = 7.1 uM) were consistent with
typical environmental conditions reported in previous studies. In comparison, nitrate
concentrations in groundwater (34.4 + 113.5 pM) were notably higher than expected background
levels (11 uM). Isotope mixing models indicated that nitrate in all water matrices was
predominantly sourced from septic/sewage systems, with contributions exceeding 50% in all
cases. During the summer, there was a rise in nitrate contributions from septic and sewage
systems, likely reflecting increased tourist activity. Interestingly contributions from combined
dog/gull waste increased in winter, aligning with avian migratory patterns. Dual isotope trends
revealed seasonal changes in nitrate processing across sample matrices. Surface waters exhibited
competition between denitrification, assimilation, and nitrification, while porewaters primarily
reflected denitrification and dissimilatory nitrate reduction to ammonia (DNRA) in most seasons,
with denitrification dominant in summer. Groundwater with high nitrate concentrations showed
competition between anammox, denitrification, and nitrification, while groundwater with low
nitrate concentrations predominantly experienced denitrification and nitrification.

Surface water NH4" concentrations averaged 4.9 + 9.4 uM, which are higher than typical
open ocean levels, with seasonal trends showing a decrease in summer due to assimilation
processes. In porewater, NH4" was the dominant nitrogen species, with an average concentration
of 27.7 + 40.6 uM, exhibiting seasonal peaks in spring and summer, likely driven by increased
microbial remineralization and DNRA. Groundwater in the region showed unusually high NH4"
concentrations, averaging 158.9 = 345.2 uM, which likely indicates a direct NH4" source.
Groundwater NH4" concentrations were categorized into three tiers based on concentration
levels: the highest tier (wells 5 and 7) had concentrations of 507.8 + 335.8 uM; the middle tier
(wells 3, 10, and 11) had concentrations of 118.4 + 108.1 uM; and the lowest tier (wells 1, 2, 4,
8,9, 13, and 14) had concentrations of 41.7 + 123.4 uM. NH4" concentrations were inversely
related to §'°N-NH4" values of: 6.8 £ 5.1%o for the highest tier, 10.5 £ 8.8%o for the middle tier,
and 15.0 + 8.1%o for the lowest tier. Wastewater effluent (3.9 £ 2.8%o) had a §'>N-NH4" value
similar to the highest tier, suggesting direct septic source contamination with minimal processing
in high-concentration wells. Microbial processing of NH4" preferentially uses the lighter '“N
isotope, leading to an increase in the remaining 8'°N-NH4", which explains the higher §'°N
values in lower concentration wells that have undergone more processing before reaching the
water table.

Surface water had an average DON concentration of 7 = 5 pM, with higher
concentrations observed in fall (10 £ 4 uM) and summer (9 + 4 uM), likely due to increased
organic matter input and microbial activity. A significant correlation between inverse DON
concentrations and §'°N-DON values indicated source mixing, leading to higher DON levels in
summer and fall, potentially from marine and wastewater-derived DON, with a minimal yet
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greater contribution from wastewater in summer compared to fall. Porewater DON
concentrations averaged 7 £ 8 uM, with no significant seasonal variations. Correlations between
DON concentrations and §'°N-NH4" supported NH4* production via remineralization in the
sediments. Groundwater DON concentrations averaged 21 + 58 uM, with higher concentrations
(48 £ 123 uM) observed in wells 5 and 7, located near septic systems, suggesting potential
contributions from septic effluent. However, the low §'°N-DON values in groundwater imply
additional processing or source contributions, such as soil-derived organic matter.

Rising water tables reduce the amount of unsaturated soil available for wastewater
filtration, thereby diminishing the effectiveness of on-site sewage facilities OSSFs. This trend is
supported by findings from this study, where [NO3] was positively (though insignificant)
correlated with depth to water (DTW), §'°N-NO;" was positively correlated with DTW, [NH4]
was negatively correlated (p = 0.0026) with DTW, and §'°N-NH4" was positively correlated with
DTW. Septic discharge typically contains 70-90% NH4", and when there is more space between
the septic discharge field and the water table (i.e., greater DTW), there is more opportunity for
NH;4" to be nitrified to NOs3", which can then be denitrified to harmless Na(g). In this scenario,
NH4" is processed before it reaches the water table, and any residual NOs™ that is not denitrified
to N2 would enter the groundwater with high §'>N-NO;" values due to partial denitrification. In
contrast, when DTW is low, septic discharge may directly reach the water table, causing
unprocessed NH4" to enter the groundwater at high concentrations with an isotopic signature
reflective of the septic source. This scenario likely explains the high NH4" concentration wells
with low 8!°N-NHa"values, similar to the wastewater NH4" isotopic signature (+3.9 £ 2.8%o). The
evidence suggests that the high NH4" concentrations, along with the lowest DTW values, indicate
compromised OSSFs, likely due to sea level variations, which could be a significant issue in this
region.

5.2. Background

Nitrogen is an essential growth-limiting nutrient for primary producers in marine
ecosystems, however excessive nutrient inputs caused by anthropogenic activities are negatively
affecting coastal waters worldwide (Gotkowska-Ptachta et al., 2016; Yang et al., 2019). These
inputs can lead to eutrophication, triggering harmful algal blooms that threaten aquatic food and
water supplies, as well as the formation of dead zones that result in fish and shellfish mortality.
Furthermore, excess nitrogen contributes to greenhouse gas emissions and overall water quality
degradation, creating unsafe conditions for recreation and aquaculture (Anderson et al., 2008; Ji
et al., 2017).

When assessing nitrogen's effects on ecosystems, it is important to consider its various
forms. Total dissolved nitrogen (TDN) in a system consists of both dissolved organic nitrogen
(DON) and dissolved inorganic nitrogen (DIN). DIN, which includes nitrite (NO2"), nitrate (NO3
), and ammonium (NH4"), has traditionally been the primary focus in studies of nitrogen loading
into water bodies. In contrast, DON is a complex mixture of molecules such as—but not limited
to—urea, amino acids, and proteins (Yang et al., 2019). Sources of DIN and DON contamination
from anthropogenic activities include animal waste, fertilizers, wastewater outfalls, septic tanks,
and stormwater runoff (Davidson et al., 2014; Gotkowska-Ptachta et al., 2016; Middelburg et al.,
2001). Co-occurring pollutants can help identify the primary sources of nitrogen loading. For
example, fecal indicator bacteria (FIB) can serve as a marker for contamination from human or
animal waste, aiding in pinpointing the sources impacting water bodies.

According to the National Oceanic and Atmospheric Administration (NOAA),
approximately 40% of the U.S. population resides in coastal counties, and this number continues
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to grow. As urbanization expands in these areas, the need for water quality monitoring and public
notification programs becomes increasingly critical. Fecal indicator bacteria are commonly used
to assess the sanitary quality of water for recreational, industrial, and water supply purposes.
Data from the National Water Quality Council reveals that in 2018, around 58% of all beaches
analyzed in the United States and Puerto Rico had bacteria levels exceeding the recommended
Beach Action Value (104 units per 100 mL water) on at least one occasion. This included
exceedances at 85% of Gulf Coast sites and 45% of East Coast beaches (Water Quality Portal).
These contamination events are expected to rise nationwide due to climate change-induced
factors such as increasing temperatures, extreme weather events, and intensified precipitation,
coupled with growing coastal populations (Powers et al., 2021; Elmir, 2018). Addressing this
growing issue is challenging, as contamination can stem from a variety of point and nonpoint
sources.

Point source pollution originates from a single, identifiable source, such as a pipe,
industrial stormwater discharge, or factory smokestack. In contrast, nonpoint source (NPS)
pollution arises from diffuse, unconfined areas, making it challenging to pinpoint the exact
sources. According to the EPA, NPS pollution typically results from land runoff containing
fertilizers and animal wastes, precipitation, drainage, seepage, or malfunctioning septic systems.
Faulty septic systems are hypothesized to be a major contributor to elevated fecal indicator
bacteria (FIB) levels in coastal areas and may also play a role in excess nitrogen loading (Powers
et al., 2021). On-site sewage facilities (OSSFs) are septic systems that treat and dispose of
wastewater on the same property where it is generated. These systems are most prevalent in rural
areas, barrier islands, and other locations where sewer infrastructure is difficult to establish;
approximately 24% of U.S. homes are served by OSSFs (Hoghooghi et al., 2021). A typical
OSSF consists of a septic tank for primary wastewater treatment, followed by effluent discharge
to the soil, where soil layers act to adsorb, purify, and filter contaminants before the effluent
mixes with groundwater. However, improperly installed or failing OSSFs may not provide
sufficient residence time or proper conditions to effectively treat nitrate and other pollutants
before mixing with groundwater (TGPC, 2019; OSSF Information System). Groundwater
seepage contaminated by such effluent can infiltrate porewater, a key medium for solute
transport to surface waters in coastal zones or streams. This porewater exchange can directly
contribute to nutrient overloading in surface waters, resulting in eutrophication (Anderson et al.,
2008; Krause et al., 2009; Sadat-Noori et al., 2019).

Although the contributions of OSSFs to coastal nitrogen loading are not well understood,
recent reports indicate that septic system malfunctions are increasingly linked to sea level
variations and more frequent heavy precipitation events. These factors have been associated with
both fecal and nitrogen pollution (Powers et al., 2021; Elmir, 2018). Rising water tables reduce
the amount of unsaturated soil available for wastewater filtration, thereby diminishing the
effectiveness of OSSFs. Coastal communities face heightened risks of OSSF failures due to
sandy, porous soils, erosion, severe weather events, and the impacts of sea level variations driven
by climate change (Mallin, 2013). Additionally, many OSSFs are old or undocumented, as
permits were not required before the Clean Water Act of 1972. These aging systems are at greater
risk of malfunction, potentially contaminating groundwater and drinking water supplies with
pathogens, nutrients, and other harmful substances. While fecal indicator bacteria (FIB) can
signal failing systems, it is essential to identify and trace all potential sources of contamination,
including OSSFs, to better understand their role in nonpoint source pollution. One effective
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method for this is the analysis of stable nitrogen isotopes in co-migrating nitrogen species within
affected waters, which can help determine the contribution of OSSFs to nutrient pollution.

In nature, nitrogen exists as two stable isotopes: '*N and '°N, having a mass of either 14
atomic mass units (amu) or 15 amu, respectively (Middelburg et al., 2001). Organisms generally
prefer incorporating '“N over '°N, due to its lower atomic mass and lower energy requirements
(Craine et al., 2015). This causes '°’N and '“N to have different reaction rates, resulting in
fractionation. The ratio of these isotopes (°N/!*N) can be unique for each nitrogen source and
serve as a “source signature”. The isotopic composition (§'°N) of these sources is determined by
comparing their nitrogen isotope ratios to the nitrogen international reference standard,
atmospheric N2, which is reported as 0%o by definition (Junk and Svec, 1958). Isotopic
composition is expressed in terms of a delta (8) value expressed in permil (%o) units difference
from this reference standard:

6:(Rsample/ Rstandard '1) x 1000

where "R" is the ratio of the heavy to light isotope.

These unique stable isotope ratios of nitrogen have been used for tracing sources in the
environment (Table 5.1). For example, sources of nitrate such as septic/wastewater influent
("N = +14.9%o =+ 3.5%o0) and animal waste (8'°N = +15%o £ 10%o) are often more enriched in
5N than other sources such as fertilizers (§'°N = —0.9%o + 1.9%o), wet deposition (§'°N =-1.9 +
3.5%0), and soil (+5%o0 = 2%0) (Kendall et al., 2007; Cox, in prep; Qiu et al., 2024; Xue et al.,
2009). Ammonium sources from untreated sewage have §'°N values of +5 to + 9%o, while
fertilizers have a range of §'"°N=—3.9%o £ 0.3%o, livestock waste values are +7.4 £ 3.8%o, and
wet deposition values range from —3.1%o £ 4.0%0 (Choi et al., 2007; Qiu et al., 2024; Cole et al.,
2006; Maeda et al., 2016). Organic nitrogen sources include fertilizers (§'°N = 0.3%o £ 0.2%o),
wet deposition (8'°N = —7.0%o to +13.1%o), sewage/septic (§'°N=+22.3%o + 7.9%o), and
livestock waste (8'"°N =+7.8 £ 0.6%o) (Liu et al., 2021; Liu et al., 2017; Qiu et al., 2024).

Table 5.1. Potential sources of nitrogen and their corresponding isotopic values. These unique
isotope signatures can be used to determine pollutant contributions in affected waters.

Source 3°N-NOz 380-NOs 85N-NH4* 3N-DON
Synthetic —0.9%o0 = 1.9%0 22%0 £ 3%o —3.9%o0 = 0.3%o 0.3%0 £ 0.2%o0
Fertilizer (Kendall et al., 2007) (Jung et al., 2020) (Choi etal., 2007)  (Liuetal., 2021)
Wet —1.9%0 = 3.5%o0 +64.6%0 £ 7.8%o0 —3.1%o0 = 4.0%0 —7.0%o to + 13.1%e0
Deposition (Qiu et al., 2024) (Qiu et al., 2024) (Qiu et al., 2024) (Liuetal., 2017
Qui et al., 2024)
Sewage/Septic  +14.9%o + 3.5%0 +19.3%0 * 2.6%0 +3.9 £ 2.8%0 +22.3%0 £ 7.9%0
(Cox, 2023) (Cox, 2023) (Cox 2023) (Qiuetal., 2024)
Livestock +15%o £ 10%o +4%o + 4%0 (Maeda +7.4%o0 + 3.8%0 +7.8%o0 = 0.6%0
Waste (Xue et al., 2009) etal., 2016) (Maeda et al., (Liu et al., 2021)
2016)
Soil +5%o0 + 2%o 5.2%o0 + 0.4%o (Nikolenko et al., 2018)
(Nikolenko et al., 2018)

While many nitrogen sources have unique isotopic signatures, different biological
processes of the nitrogen cycle can have fractionation effects that alter the original isotopic
composition (Table 5.2). Strong fractionation is associated with dissimilatory processes, while
weak fractionation is associated with assimilatory processes such as primary production
(Ryabenko, 2013). Dissimilatory processes include denitrification, reduction of nitrate to
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ammonium (DNRA) in suboxic to anoxic conditions, nitrification, and anaerobic oxidation of
ammonium (anammox) (Ribot et al., 2017). In denitrification, nitrate is used to oxidize organic
matter, causing the production of NoO, NOx, and N». This is considered a net loss of DIN if these
compounds leave as gases; otherwise, these will remain as inorganic N compounds. A competing
nitrate reduction process, DNRA, is the anaerobic reduction of nitrate to nitrite, and then to
ammonium. Research suggests that DNRA starts to be favored over denitrification with rising
salinity and increasing temperature. This is also the case with a high DOC:NO3™ ratios (Giblin et
al., 2013; Gao et al., 2021). Nitrification is the oxidation of ammonium to nitrate and is used to
meet energy demands of plants. Nitrification has been shown to increase with ammonium
concentrations, especially in streams receiving wastewater effluents (Ribot et al., 2017). Other
processes include anammox, where nitrite is combined with ammonium to produce nitrogen gas
under anaerobic conditions, and remineralization, where organisms consume organic nitrogen
and convert some of it back to ammonium (Kartal et al., 2010; Mdbius, 2013).

Nitrification is associated with a fractionation of -35 to 0%o, while denitrification is
associated with an effect of +5 to + 25%o (Granger and Wankel, 2016). Other processes and their
corresponding enrichment factors are NOs™ uptake (5.9%o % 3.7%0), NH4" uptake (9.4%o + 6.6%o),
anammox (— 31%o), remineralization/ammonification (-2.3 to 0%o), and nitrogen fixation (=3 to +
1%o0) (Denk 2017; Brunner, et al., 2019; Kendall et al., 2007; Yu et al., 2021) (Table 5.2).
Nitrogen isotope ratio data can also help discern if a reaction is complete; for example,
incomplete nitrification of ammonium would cause lower §'°N-NOs™ than that of the initial
ammonium §'°N value (Murgulet and Tick, 2013). It is important to take these processes and
unique source signatures into account to determine nitrogen inputs and cycling in different
regions and ecosystems.

Table 5.2. Nitrogen processes and their corresponding enrichment factors.

Process Enrichment Factor () Reference

Nitrification -35%o to 0%o Granger and Wankel, 2016

Denitrification +5%o0 t0 +25%o Granger and Wankel, 2016

NO3™ Uptake 5.9%o0 % 3.7%o Denk et al., 2017

NH4* Uptake 9.4%0 £ 6.6%o0 Denk et al., 2017

Anammox 31%o Brunner et al., 2013

Remineralization/Ammonification -2.3%o to +1%o Yu etal., 2021; Mobius 2013;
Kendall et al., 2007

Nitrogen Fixation —3%o to + 1%o Kendall et al., 2007

DNRA unknown Inamdar et al., 2024

While nitrogen has been used to fingerprint sources of nitrate contamination and to
analyze the effects of nitrogen processes, the identification of nitrogen sources and cycles using
only 6'°N values is limited because of overlapping values from the different nitrate sources.
Analysis can therefore be combined with §'*0 to reduce the uncertainty of nitrogen isotopes in
identifying nitrate source contributions (Jung et al., 2020). The predictable changes in
composition of both nitrogen and oxygen isotopes in nitrate in water can also help determine the
extent to which a source has experienced nitrification (nitrate formation), assimilation (nitrate
removal) and/or denitrification (nitrate removal) (Snow, 2018). These dual isotopes can then be
plotted vs each other to identify sources and processing and also used in Bayesian-type mixing
models to estimate source apportionment (Kendall et al., 2007; Zhang et al., 2018).
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Identifying sources of contamination is becoming increasingly critical in regions like the
Texas Gulf Coast, where the Texas Beach Watch program has reported rising levels of fecal
indicator bacteria (FIB) over the past decade (Figure 5.1). From 2009 to 2019, the Texas General
Land Office (TGLO) documented that, on average, 21.90% of water samples in Matagorda
County exceeded the United States Environmental Protection Agency’s (US EPA) Beach Action
Value (104 MPN). Similarly, Brazoria County reported an average exceedance rate of 11.93%,
while Galveston County averaged 7.09% exceedances during the same period (Powers et al.,
2021). Brazoria and Matagorda Counties are particularly concerning, as 2019 enterococci
concentrations were statistically higher than in other Texas coastal counties and showed a
significant increase compared to previous years. Since there are relatively few point sources of
FIB in these areas, it is suspected that nonpoint sources (NPS), particularly from on-site sewage
facilities (OSSFs), are the primary contributors. According to the Texas Groundwater Protection
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. approximately one in five homes
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Figure 5.1. Temporal trends of water sample enterococci within the Coastal Zone of
concentrations along Texas Gulf Coast beaches from 2009 to  Texas. These inventories are
2021 (Texas BeachWatch, Powers et al., 2021). essential for identifying

malfunctioning OSSFs as part of
coastal NPS pollution control efforts. Many systems uncovered during these assessments are old
or undocumented, placing them at the highest risk for malfunctions and associated water quality
impacts.

Given the rising concerns about OSSF malfunctions and contamination, along with the
lack of nutrient and DON data along the increasingly vulnerable Texas Gulf Coast, it is critical to
identify the sources and drivers of nitrogen loading in Texas coastal waters. For Task 3, we
employed stable isotope techniques to investigate the sources and processing of nitrogen
loading to sandy barrier islands and coastal waters from Matagorda to Galveston Island.
Groundwater elevations were continuously monitored throughout the project to assess whether
water table fluctuations were associated with changes in nitrogen loading. The 3'°N and nitrogen
concentration data collected in this study provide valuable insights into the sources with the
greatest impacts on water quality throughout the year in these coastal regions. The findings aim
to inform the development of effective mitigation strategies to prevent water contamination,
harmful algal blooms, and eutrophication. Additionally, monitoring the effects of sea level
variations on nitrogen loading will equip stakeholders, landowners, and policymakers in coastal
communities with the knowledge needed to prepare for varying sea levels and the broader
impacts of climate change in the years to come.
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5.3. Methods
5.3.1. Sample Collection

Samples were collected from various sites along the coast of Matagorda, Brazoria, and
Galveston counties monthly from November 2021-May 2023 (Figure 4). Groundwater samples
from wells are located within 200 meters from the shoreline at predetermined locations near
septic systems. Corresponding pore and surface water sites (denoted by matching numbers in
Figure 4) are located along a straight transect that was the closest distance from the well to the
shore. Pore and surface water samples were collected ~6 m from the shoreline.

On-site physical and chemical properties of water collected included temperature,
salinity, pH, conductivity, dissolved oxygen, and oxidation/reduction potential by a multi-probe
Y SI series six sonde. Surface water was collected at 20 cm below the air-water interface.
Porewater was sampled from the sediment with a piezometer sampler attached to a peristaltic
pump after the water ran clear (free from sand).

For groundwater sampling, before samples were collected, the well was purged by 3 well
volumes. To determine the amount of stagnant water necessary to purge, the amount of standing
water was first calculated by measuring the diameter of the well (2 inches for this project), total
depth of the water in the well (25 feet for this project), and the water level at the time of
sampling. The water level at the time of sampling was calculated by subtracting the depth of
water from the top of the casing (taken in the field with measuring tape).

Groundwater was sampled at the wellhead using a peristaltic pump after all YSI readings
were stable. All water samples were placed in ice and brought back to the lab in 1L HPDE
bottles, which had been rinsed with acid, MQ water, and finally triple rinsed with sample water.
Samples were filtered through a 0.2 pm GF/F and frozen before analysis. Before each
concentration analysis section outlined below, frozen samples were completely thawed in a
room-temperature water bath. After the needed amount of thawed samples was taken, the
samples were immediately placed back in the freezer.

5.3.2. Sample Analysis

5.3.2.1. NH{", NO>, NOs, TDN and DON concentration Analysis

The concentration of NH4" was measured using the o-phthalaldehyde (OPA) fluorometric
method (Holmes et al., 1999). The working reagent was prepared by mixing 5 mL OPA solution
(1 g of reagent grade OPA in 25 mL of ethanol), 0.5 mL borate solution (10 g of reagent grade
sodium tetraborate in 250 mL MQ water), and 94.5 mL sodium sulfite solution (0.8 g of reagent
grade sodium sulfite in 100 mL MQ water). Samples were measured with 5 standards of NH4" (0,
1.0, 10.0, 20.0, and 50 um). For each sample and standard, 0.25 mL was added into individual
cuvettes, followed by 1 mL of the working reagent. Then each cuvette was shaken and placed in
the dark to react for 3 hours. After 3 hours, cuvettes were analyzed for raw fluorescence (RFU)
using a Trilogy® Laboratory Fluorometer with the UV/Ammonium module. The NH4"
concentrations were then calculated through the calibration curve produced from the RFU values
of the standards, with an R? value of at least 0.999.

5.3.2.2. NO> Concentration Analysis

The NO7™ concentration was measured using a colorimetric method (Tsikas, 2007). The
color producing reagent was made by mixing the sulfanilamide solution (8 g sulfanilamide, 70
mL of phosphoric acid, and 30 mL of MQ water) and the NEDA solution (0.56 g N-(1-Napthyl)-
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ethylenediamine dihydrochloride in 100 mL MQ water) in a 10:1 ratio. Samples were measured
with 5 standards NO>™ (0, 1.0, 10.0, 30.0, and 50.0 pm). For each sample and standard, 1 mL was
added into individual cuvettes, followed by 0.25 mL of the color producing reagent. Then
cuvettes were shaken and placed in the refrigerator to react for 30 minutes, followed by 20
minutes at room temperature for equilibration. Cuvettes were then analyzed for absorbance using
a Trilogy® Laboratory Fluorometer with the Absorbance/N module. The NO> concentrations
were calculated through the calibration curve produced from the absorbance values of the
standards with an R? value of at least 0.999.

5.3.3.3 NOs Concentration Analysis

To measure NO3™ the cadmium reduction method was used to reduce it to NO>™ (Tsunogai
et al., 2008). The reductant, spongey cadmium, was made by adding 8-10 zinc sticks in 11 g
cadmium chloride dissolved in around 400 mL of MQ water. After sitting overnight but before
24 hours, the zinc sticks were removed from the spongey cadmium and 3 drops of 6 N HCI were
added to acidify the cadmium. The remaining solution was drained, and the solid cadmium was
submerged in a 6 N HCI solution. A small spatula was used to break the cadmium into small
pieces to increase surface area, and also activate the cadmium in the HCI solution. The HCI
solution was then drained, and the cadmium was rinsed with MQ water until the pH was neutral
(7) or lower.

Nitrate standards were prepared for analysis along with the samples (30.0, 50.0, and 70.0
pM). An ammonium chloride buffer was mixed by dissolving 3.74 g of ammonium chloride in
80 mL HPLC grade water in a 150 mL HDPE plastic bottle. Then 0.5 mL of 6 M NaOH was
added to adjust the pH to 8.5, and the buffer was diluted with an additional 20 mL HPLC grade
water. 1| mL of this buffer was added to each 5 mL sample/standard in a 15 mL centrifuge tube.
Next, 0.3 g of the cadmium was added to each centrifuge tube, and samples were placed on a
shaker table for 90 minutes to ensure the NO3™ is reduced to NO>". Then, the concentration of
NO;™ + NOz™ was calculated via the colorimetric method explained under the NO2™ concentration
analysis section, taking into account the dilution of the sample/standard with the ammonium
chloride buffer by multiplying the concentration of each sample by 6/5, and using the standards
to ensure a conversion of NO3™ to NO;™ of at least 90% (Tsikas, 2007).

5.3.3.4. NH;" Removal for TDN Concentration Analysis

The DON concentration was calculated as the difference between TDN and DIN
concentrations. In this case TDN is equal to DON + NO3/NO;" since NH4" was removed in the
previous step. The concentration of TDN was measured by oxidizing the TDN to NO3™ by the
persulfate method, followed by reduction to NO;™ by the cadmium method (Tsunogai et al.,
2008). The oxidizer, persulfate solution, was made by adding 1 g persulfate into 1.17 mL 6 N
NaOH followed by dilution to a final volume of 20 mL using HPLC water. The persulfate
solution (0.15 mL) was added to 10 mL of each sample and shaken well before putting into the
autoclave for two 30-minute cycles. Then these oxidized samples were reduced to NO2™ by the
cadmium method mentioned in the NO3™ concentration analysis section. DON standards (e.g.,
urea, glycine, EDTA, N-acetyl-D-glucosamine) were oxidized and reduced with samples to make
sure at least 90% conversion of TDN to NO>™ was achieved.

5.3.3.5. TDN and DON Concentration Analysis

The DON concentration was calculated as the difference between TDN and DIN
concentrations. In this case TDN is equal to DON + NO3/NO; since NH4" was removed in the
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previous step. The concentration of TDN was measured by oxidizing the TDN to NO3™ by the
persulfate method, followed by reduction to NO;™ by the cadmium method (Tsunogai et al.,
2008). The oxidizer, persulfate solution, was made by adding 1 g persulfate into 1.17 mL 6 N
NaOH followed by dilution to a final volume of 20 mL using HPLC water. The persulfate
solution (0.15 mL) was added to 10 mL of each sample and shaken well before putting into the
autoclave for two 30-minute cycles. Then these oxidized samples were reduced to NO2™ by the
cadmium method mentioned in the NOs3™ concentration analysis section. DON standards (e.g.,
urea, glycine, EDTA, N-acetyl-D-glucosamine) were oxidized and reduced with samples to make
sure at least 90% conversion of TDN to NO>™ was achieved.

5.3.3.6. 6"°N and 6"°0 of NOs, 6"’ N-NH*, 6"’ N-DON Analysis

The isotopic ratios of NO3™ and NO™ were measured by the denitrifier bacteria method
(Sigman et al., 2001). The NO3™ and NO;" in the sample were converted to N>O by denitrifier
bacteria and the nitrogen isotopic composition was measured by injecting the N>O into a
continuous flow isotope ratio mass spectrometer (CF-IRMS). Internationally recognized
standards (USGS34, USGS32, IAEA-N3 and USGS35) were measured during sample analysis to
provide a known §'>N-NOs™ reference for data corrections. Nitrite was not removed but on
average was only 5% of the total NO3™ + NO»™ concentration so §'°N-NO3/8'°N-NO;" is assumed
to represent 8'°N-NOjs~ for purposes of investigation and discussion. The nitrogen isotopic ratio
was calculated using the equation below and was reported in conventional delta (d) notation in
permil (%o):

(*N/*N)sample — (**N/**N)standard

§°N — NO; /NO; = x 1000
2/NOs (>N /**N)standard

3.3.3.7. 6’ N-NH," Analysis

The NH4" was oxidized to NO,™ via bromate/bromide oxidation method (Felix et al.,
2013; Zhang et al., 2007), and then the nitrogen isotopic ratio of DIN (NH4", NO, and NO3")
was measured using the denitrifier bacteria method. If the concentration was > 10 uM then the
sample was diluted with MQ water to 10 uM before undergoing oxidation. The Br/Br stock
solution was made by adding 0.6 g sodium bromate and 5 g sodium bromide in 250 mL MQ
water. Then the Br/Br working reagent was made by adding 1 mL of the stock solution to 50 mL
Milli-Q water and 6 mL of 6 N HCI. The mixture was left to react in the dark for 5 minutes, after
which the working reagent was diluted to a volume of 100 mL with 6 N NaOH. The working
reagent (1 mL) was added into samples and shaken vigorously before being put on the shaker for
90 minutes to make sure the NH4" was oxidized. Internationally recognized standards (USGS34,
USGS32, IAEA-N3 and USGS35) were measured during sample analysis to provide a known
8!"N-NO;" reference for data corrections. Additionally, USGS isotope standards (USGS 25
ammonium sulfate and USGS 26 ammonium sulfate) were oxidized along with the samples and
included as reference samples during isotope analysis in order to check for oxidation efficiency
and to correct for any interference due to reagent blank effects. The §'°N- NH4" was calculated:

8'°N = DIN = fyys X 8"°N = NH} + fyo;/n0; X 6'°N — NO; /NO3

where fnua+ stands for the fraction of the concentration of NH4" contributing to DIN of

the sample and fyo; /no; - stands for the fraction of the concentration of NO2™ and NO3®

contributing to DIN of the sample.
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5.3.3.8. 6"°’N-DON Analysis

The §'°N-DON was calculated:

8N —TDN = fpon X 8"°N —DON + fyo;/n05 X 8"°N — NO; /NO3

where fpon stands for the fraction of the concentration of DON contributing to TDN of
the sample and fyo;/no; stands for the fraction of the concentration of DIN contributing to TDN

of the sample. The error of back-calculated '>N-DON was reported to be over 1.5%o when DON
was less than 20% of TDN pool (Cao et al., 2021). Thus, only samples that had DON higher than
20% of TDN (in this case DON = TDN — NO,/NOj3") underwent 3'°N-TDN analysis.

Here the NH4" was removed from the sample and only NO, and NOs™ were left in the
DIN pool to reduce the error due to back calculation. This was done through NH4" diffusion.
NaOH (5 M) was added to raise the pH above 10 and remove the NH4". After NHs" was
removed, the DIN pool only contained NO>” and NOs™ and the §'°N-DIN was measured as
specified above. In order to measure §'°N-TDN, the TDN was oxidized to NO3™ using the
persulfate method and then the isotopic ratios could be measured using the denitrifier bacteria
method (Knapp et al., 2005).

5.3.3. Isotope Mixing Model

A dual isotope mixing model for NO3™ source contributions was developed for
groundwater using source signatures of sewage/septic, atmospheric deposition, dog waste/gull
guano, and soil and soil was replaced with Gulf of Mexico (GOM) NOs™ sourced for pore and
surface water. Nitrogen isotope signatures of potential sources are shown in Table 5.3.
Contamination can originate from various sources, but a primary source was hypothesized to be
septic systems throughout the study area due to most well sites being located in relatively close
proximity to an OSSF. In addition, there are about 1,223 documented OSSFs on the barrier
islands of this study area. Of these, 978 are either over 10 years old or have an undocumented
age, which poses an increased risk for failure or malfunction (Houston-Galveston Area Council
OSSF Information System; Bonaiti et al., 2017).

Fertilizers and animal manure are not likely contaminants to these areas, as lands are
herbaceous wetlands or highly urbanized (Houston-Galveston Area Council). However, bacteria
marker data indicates dog and gull waste (Kapoor personal communication/this report), as a
prominent source of bacteria and have been included in this mixing model as a potential
significant source of nitrogen. In addition, there have been documented cases of contamination
of beaches from dogs and gulls in beaches of California and Florida (Goodwin et al., 2016;
Converse et al., 2012). The §'°N value for these sources overlaps and were combined for a value
of 7.9 + 2.1%o0 (Mizota 2009; 2009a; Hixon et al., 2022). Another possible nitrogen source is
atmospheric deposition. Atmospheric deposition affects biogeochemistry in the upper ocean, and
the coastal bend of Texas is considered a humid subtropical climate (U.S. Climate Data). The
Galveston Coast Guard Station, located on Galveston Island, monitors weather conditions and
reports that the wet season is from June-September, while the dry season is from October-May.
The last source included in this model was soil. Sandy soils comprise the majority of the study
area; these types of soils are documented as hotspots for organic matter mineralization, as sands
are highly permeable (Zhou et al., 2023).

The mixing model was completed by the Stable Isotope Analysis in R (STAR) that uses a
Bayesian framework. The following equations were used:
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1?151\1'Ngu1f :ﬁsx (SISN'NSS + 8) +f(‘1gx (SISN‘ng + 3) +fsoil or mar X (SlsN'Nsoil ormar T 5) +
fwdx (8"°N-Nya + €)

where 8'"°N-Ngyit is the nitrogen isotopic composition of NOs™ of Gulf samples and fsep,
Seull, fsoits fmar and fwa are the contribution of sewage/septic, dog waste/gull guano, soil, Gulf of
Mexico and wet deposition, respectively. §!°N-Nj; is the nitrogen isotopic ratio of NO3™ from
sewage/septic. 8'’N-Ngu is the nitrogen isotopic ratio of NO3™ from dog waste/gull guano. §'°N-
Nioil 18 the nitrogen isotopic ratio of NO3™ from soil. §'°N-Nya is the nitrogen isotopic ratio of
NOs™ from wet deposition and §'°N-Nmar is the nitrogen isotopic ratio of from the Gulf of Mexico
waters. ¢ is the isotope effect applied to each source. To determine the isotope effect, e, of NO3"
in porewater In NOs™ vs §'°N-NOs™ was but the relationship was insignificant (p = 0.74), however
for 90% of the data yields a significant correlation (p < 0.0001) with a slope indicating an ¢ of
4.9%o. The porewater 6'30-NO3" vs §'°N- NOs™ slope (1.16) which is close to a theoretical 1:1
slope of denitrification and was considered the primary fractionation process albeit with
contributions from other processes leading to deviations from the 1:1 line (e.g., DNRA
nitrification, anammox). A literature porewater denitrification fractionation effect of 5%o was
similar to the & of 4.9%o associated with 90% of the data and was applied to porewater §'’N-NO3"
values (Sigman and Fripiat 2019) a fractionation correction factor. To determine isotope effect
occurring in groundwaters, §'°N vs 8'%0 was plotted and it was observed that the trend for
samples with §'°N values over 30%o was indicating a different fractionation process than those
samples under 30%o. The under 30%o samples did not have a significant correlation between In
NOs and 8'°N-NO;™ but the §'°N vs §'%0 had a slope of 0.89 which was indicative of a primarily
denitrification process and the literature porewater denitrification isotope effect of 5%o was
applied. The >N vs 180 slope for the >30%o samples was very low (0.13) which is indicative of
the competing production of nitrate through oxidation and the loss of nitrate through reduction.
Since the wells have low DO levels, the oxidation process is likely anammox which has been
shown as a significant oxidation pathway in aquifers (Clark et al., 2008; Erler et al., 2008;
Robertson et al., 2012; Granger and Wankel 2016). This pathway can account for large
fractionation explaining the high §'°N values. Brunner et al., 2013 suggest nitrate production
associated with anammox displays an inverse kinetic fractionation effect of -31%o0 which was be
applied here to groundwater samples with §'°N-NOs™ values >30%o. Surface water §'°N-NO3"
values are likely a product of nitrification, denitrification and assimilation. To determine the
overall ¢, surface In NO3'vs ’N- NOs™ was plotted without eight high concentration outliers. The
result was a highly significant relationship (p = 0.0005) with a slope of 3.3 which is the ¢ factor
applied to the surface water samples (Kendall et al., 2007).

Table 5.3. Nitrate nitrogen isotopic signatures used for the SIAR mixing model. When possible,
source signatures as local to the study region were used. Sewage/Septic values are from three
wastewater treatment plants in the Texas Coastal Bend, wet deposition values are from a station
south of the study region located on the Texas coast and marine values are from Gulf of Mexico
waters.

Source 65N-NO3 Reference

Wet Deposition —1.9%o0 + 3.5%o Qiu et al., 2024

Sewage/Septic +14.9%o0 % 3.5%o Cox, in prep

Dog/Gull guano +7.9%o0 £ 2.1%o0 Mizota, 2009; 2009a; Hixon et al.,
2022
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Soil +5%o * 2%o Nikolenko et al., 2018

. +4.7%o * 0.9%o
Marine Howe et al., 2020

Table 5.4. Isotope effects used for the SIMMR model according to sample matrix.

Sample Matrix 15¢ Reference
Groundwater 31%o Granger and Wankel, 2016; Brunner et al., 2013
SN > 30
Groundwater 5%o Sigman and Fripiat 2019
SN < 30
Surface water 3.3%o Empirical data from this work
Porewater 5%o Sigman and Fripiat 2019
5.4. Results

Surface, pore, and groundwater samples were analyzed for NO3™, NO2", NH4", and DON
concentrations, as well as 8'°N-NOs", §'%0-NO;, §'°N-NH4", and §'°N-DON values (Table 5.5).
When reporting seasonal trends, fall is September 2022, October 2022, November 2021, 2022;
winter is December 2021-February 2022; spring is March-May 2022, 2023; and summer is June-
July 2022. Three outlier §'*N-DON were within the %DON of TDN for valid isotope back
calculation but were high outliers and were not included in averages (i.e., 1/2022 W5 (75.7%o)
1/2022 W9 (81.6%0) and 3/2023 W9 (105.3%e).

Table 5.5. Nutrient concentration averages (uM), 615N, and 0180 averages (%o) (November
2021- April 2023) for surface, pore, and groundwater samples. n = # of samples. Isotope data is
only available for samples with a concentration > 3 uM of the analyte of interest.

Sample NOz NOz (uM)  NH.* DON &'°N- 6%0-NOs”  8'°N- &'°N-
Type (M) (M) (M) NOs NHa* DON
Surface 3.445.2 0.3+1.0 4.919.4 7£5 13.5+£3.2 17.3%4.7 13.146.1 545
(n=300) (n=300) (n=300) (n=300) (n=107) (n=107) (n=66) (n=208)
winter  5.2+7.2 0.3£1.0 3.8+3.8 5+5 12.6£3.0 17.4+55 11.2+6.3 4+4
(n=101) (n=101) (n=101) (n=101) (n=54) (n=54) (n=28) (n=47)
spring 2.6£2.3 0.6£1.5 3.0£2.7 746 13.8+3.0 16.8+3.1 13.446.3 6%8
(n=83) (n=83) (n=83) (n=83) (n=28) (n=28) (n=21) (n=63)
summer 2.9+1.1 0.240.3 2.2+2.0 9+4 15.4+3.2 184436 14.1+3.6 7+3
(n=50) (n=50) (n=50) (n=50) (n=22) (n=22) (n=7) (n=38)
fall 2.045.3 0.1+0.2 2.4+2.3 1044 13.0+3.1  10.7#1.8 16.7#4.0 4+3
(n=66) (n=66) (n=66) (n=66) (n=3) (n=3) (n=10) (n=60)
Pore 43471 0.2+0.4 27.7£40.6 7+8 147443 129457 10.616.3 5#5.
(n=192) (n=192) (n=192) (n=192) (n=77) (n=77) (n=138)  (n=113)
winter  7.6+12.5 0.3+1.4 27.3+33.4 8+10 14.046.8 12.5+6.8 11.4+6.2 6%7
(n=52) (n=52) (n=52) (n=52) (n=32) (n=32) (n=43) (n=24)
spring 27425 0.240.2 31.5428.3 748 15.3+4.8  13.7#44 7.8+7.3 515
(n=53) (n=53) (n=53) (n=53) (n=16) (n=16) (n=47) (n=31)
summer 3.1+1.6 0.3£0.5 32.9470.0 7+7 16.3+2.7 14.6+4.3 11.6+3.8 56
(n=47) (n=47) (n=47) (n=47) (n=19) (n=19) (n=21) (n=28)
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fall 2.61£2.5 0.2+0.3 18.6+26.4 848 13.242.3  9.7#4.0 13.7+3.6 64
(n=40) (n=40) (n=40) (n=40) (n=10) (n=10) (n=27) (n=30)
Ground 34.4+1135 2.7+10.1  158.94345.2 21458 29.3+14.3 20.546.3 10.948.3 311
(n=207) (n=207) (n=207) (n=207) (n=78) (n=78) (n=116)  (n=95)
winter  69.1+191.5 4.3+11.9 127.44194.4 29471 32.0+13.0 22.2+7.9 10.319.4 617
(n=64) (n=64) (n=64) (n=64) (n=23) (n=23) (n=42) (n=26)
spring 2254404  3.4+3.7 172.14506.5 30+77 27.3t15.8 18.5+5.3 7.6£7.8 245
(n=59) (n=59) (n=59) (n=59) (n=24) (n=24) (n=33) (n=31)
summer 10.6+18.4  1.3+2.6 257+378.7  7+11 26.8+12.6 23.2+3.0 13.0#5.7 148
(n=36) (n=36) (n=36) (n=36) (n=19) (n=19) (n=14) (n=13)
fall 19453.2 0.9+3.5 111.3+199.2 8410 32.1+16.1 16.9+6.1 14.9+6.2 2+11
(n=48) (n=48) (n=48) (n=48) (n=12) (n=12) (n=27) (n=25)

5.4.1. Nitrate Spatial and Temporal Variations
5.4.1.1. Nitrate Surface Water

The average NO3™ concentrations of surface water samples overall were 3.4 + 5.2 uM (n
=300). Concentrations were significantly higher in the winter (5.2 = 7.2 uM, n=101; p=0.002).
than fall (2.0 £ 5.3 uM, n = 66), spring (2.6 £ 0.23 uM, n=83; p = 0.03), and summer (2.9 + 1.1
uM, n=50; p=0.03)(ANOVA). Winter, spring, and summer were statistically similar (Figure 5.2)
and while most months were statistically similar averaging 2.8 + 3.3 uM (n = 284), January 2023
was distinctly higher 14.7 £ 13.8 uM (n =16). For most sites there were no significant
differences in average concentrations (p > 0.05; ANOVA) (Figure 5.3) with sites 1, 12, 14, and
19 being observably higher than the average.

Average 8'°N-NOs” values were 13.5 £ 3.2%o (n = 108) and average §'*0-NO;" values
were 17.3 £4.7%o (n = 108). 8'°N values (15.4 £ 3.2%o) in summer were significantly higher
than in fall and winter (p < 0.001). Fall §'0 values (10.7 £ 1.8%o) were significantly lower than
all other seasons (p < 0.01). Most sites’ average §'°N and §'®0 values were not significantly
different from each other. Site 5 had the highest '°N average (16.0 + 2.9%o) and site 17 had the
lowest (10.1 £ 0.8%0) with the two being significantly different (p = 0.001). Site 5 had the
highest 5'0 average (20.0 + 4.8%o) and site 12 had the lowest (13.3 % 3.7%o) with the two
being significantly different (p = 0.002). Plotting both §'°N and §'%0 data in a dual isotope plot
allows for preliminary differentiation between sources with similar or overlapping 5'°N values
although isotope fractionation must ultimately be accounted for when deducing source
apportionment. The slope of the line (and the resulting §'°N:5'30 ratio) produced from the plot
provides insight to the fractionation processes that are occurring (Figure 5.4) (Kendall et al.,
2007). Surface nitrate samples as a whole had a §'°N:5'%0 ratio of 0.85.

Sample §'°N values were deployed in a SIAR mixing model to estimate source
contributions. Overall, source contributions to surface water were estimated as septic/sewage (36
+ 17%), dog/gull guano (32 £ 18%), marine (23 = 8%), and wet deposition (9 + 4%) (Table 5.6).
Septic/sewage was estimated as the primary source of NO3™ for all months except fall months,
which showed dog waste/gull guano as the primary source of NO3™, however fall months only
had 3 samples with concentrations high enough for isotope analysis (Figure 5.5). Most sites also
showed septic/sewage as the primary source, with the exceptions of S8, S9, and S12 where dog
waste/gull guano was the primary source. For all months and sites, septic/sewage and dog
waste/gull guano were the estimated dominant sources.
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Figure 5.2. Surface water NO3- concentrations by month.
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Figure 5.3. Surface water NO3- concentrations by site.
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Table 5.6. Nitrate isotopic composition (%o) and % source contribution to nitrate in surface
waters by season and site. SS, dg, wd, mar is the % contribution from sewage/septic dog

waste/gull guano. wet deposition and Gulf of Mexico waters, respectively.

100

Season/Site  n= OBN-  8%0- % % % % % % % %
NOs NOs Sss error  dg error  wd error mar error

All 107 135 17.3 45 17 26 19 13 9 16 11
Winter 54 12.6 17.4 38 17 30 21 14 10 18 12
Spring 28 13.8 16.8 47 16 25 20 12 9 16 11
Summer 22 154 18.4 58 15 19 15 11 7 13 9

Fall 3 13.0 10.7 41 17 29 21 14 10 17 12
1 9 14.0 16.5 48 17 25 19 12 8 15 11
2 3 14.1 18.0 48 17 24 19 12 8 16 11
4 7 16.0 175 61 14 17 14 10 7 12 9

5 8 16.0 20.4 61 14 17 14 10 7 12 9

6 2 12.2 17.6 36 16 30 20 15 10 20 13
8 5 11.2 13.4 29 15 31 21 17 12 23 15
9 4 10.3 13.4 24 14 31 20 19 12 26 18
10 4 12.7 16.8 39 16 29 20 14 10 18 12
11 6 12.8 18.1 39 16 29 20 14 10 18 12
12 11 11.9 131 34 16 31 21 15 10 21 14
14 8 14.4 18.1 51 16 22 18 12 8 15 11
15 9 135 18.1 45 17 26 19 12 9 17 12
16 8 14.7 22.9 45 17 26 19 13 9 16 11
17 6 10.1 16.7 23 14 30 20 19 13 28 19




18 6 14.1 17.6 48 17 24 19 12 8 16 11
19 5 13.6 14.4 45 17 26 19 13 9 16 11
20 7 14.2 18.9 49 16 24 19 12 8 15 10
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815N-NO;~ 8'30-NO; Sew/Sep Dog/gull Wet Dep Marine

All 135%  17.3%  45+17% 26+19% 13+£9% 16+ 11% :
Winter — 12.6%  17.4%  38=17% 30£21% 14+10% 18+ 12% -

Spring 13.8%o 16.8% 47+16% 25+20% 12+9% 16+11%
Summer 15.4%0 18.4%0 58+ 15% 19+15% 11+7% 13+9%

Fall 13.0%o 10.7%  41£17% 29+21% 14+£10% 17+12%

All(n=107)

Figure 5.5. Surface water NO3- estimated source % contributions throughout duration of
sampling and for each season.

5.4.1.2. Nitrate Porewater

The overall average porewater NO3™ concentration was 4.3 + 7.1 uM (n=192). There was
significant difference between winter (7.6 = 12.5 uM) and fall (3.6 = 2.5 uM) (p = 0.03) but his
was primarily due to an outlier average in January 2023 (20.3 £ 20.2 uM) similar to the trend
seen in surface waters (Figure 5.6). Average concentration differences across porewater sites
were mostly insignificant with sites 9, 10 and 19 being observably higher than the average
(Figure 5.7).

Average §'"N-NOs" values were 14.7 + 4.3%o and average '°0-NOs™ values were 12.9 +
5.7%o (n = 77). Season §'°N and §'®0 values were not significantly different with the exception
of fall (13.2 + 2.3%o, 9.7 + 4.0%0) being significantly lower than summer (16.3 &+ 2.7%o, 14.6 =
4.3%0)(p < 0.009). §'°N value averages were lowest at site 8 (11.6 + 2.6%o) and highest at site 2
(17.3 + 3.4%0). Samples had a §!°N:5'%0 slope of 1.17 (Figure 5.4). Overall, isotope mixing
models estimate source contributions to porewater were dog waste/gull guano (27 + 20%),
septic/sewage (42 £ 17%), soil/marine (18 £ 12%), and wet deposition (14 £ 9%) (Table 5.7).
Septic/sewage was consistently the primary source with it being equal to dog/gull in fall (Figure
5.8). For all sites septic/sewage were the estimated dominant sources with the exceptions of sites
8 and 18 where dog/gull was the primary source.
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Figure 5.6. Porewater NO3- concentrations by month.
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Figure 5.7. Porewater NO3- concentrations by site.
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Table 5.7. Nitrate isotopic composition (%o) and % source contribution to nitrate in pore waters
by season and site. SS, dg, wd, soil/marine is the % contribution from sewage/septic dog

waste/gull guano. wet deposition and Gulf of Mexico waters, respectively.

Season/Site  n=  §°N- 8'80- % % % % % % % %
NOs NOs SS error dg error wd error mar error
All 77 14.7 12.9 42 17 27 20 14 9 18 12
winter 32 14.0 125 37 17 30 21 15 10 19 13
spring 16 15.3 13.7 45 17 26 20 13 9 16 11
summer 19 16.0 14.6 51 16 23 18 12 8 15 10
fall 10 13.2 9.7 31 16 31 21 16 11 22 15
2 9 17.3 16.0 58 14 18 14 11 7 13 9
4 9 16.8 14.9 56 15 19 15 11 7 14 9
5 7 15.0 15.4 43 17 27 20 13 9 17 12
8 8 11.6 9.1 22 13 30 20 20 13 29 19
9 7 13.7 114 34 16 31 21 15 10 20 14
10 8 13.9 10.4 36 17 30 21 15 10 20 14
11 8 14.1 11.2 37 17 29 21 14 10 20 13
14 1 15.9 23.3 50 16 24 18 12 8 15 10
15 7 13.6 11.6 33 16 31 21 15 11 21 14
16 5 15.3 15.7 45 17 26 20 13 9 16 11
18 2 12.8 11.1 29 15 31 21 17 11 24 16
19 6 15.1 13.0 44 17 27 20 13 9 17 11

]

Summer (n=19)

Winter (n = 32) Spring (n=16)
815N-NO;~ 8'30-NO;  Sew/Sep Dog/gull Wet Dep Marine
All 14. 7% 12.9%0  42+17% 27+20% 14+£9% 18+12%
Winter 14.0%o 12.5%  37+17% 30+21% 15+10% 19+13%
Spring 15.3%o 13.7%  45+17% 264£20% 13+9% 16+11%
Summer  16.0% 14.6% 51+16% 23+18% 12+8% 15+10%
Fall 13.2%o 9.7%  31+16% 31+21% 16+11% 22+15%

"

Fall(n=1

0)

All(n=77)

Figure 5.8. Porewater NO3- estimated source % contributions throughout duration of sampling
and for each season.

5.4.1.3. Nitrate Groundwater
Overall, average NO3™ concentrations of wells were 34.4 = 113.5 uM (n =207).

However, three sites were significantly higher than the others (W1, W9, and W13; these sites

will thus be referred to as “high NOs3™ wells” for the purpose of comparison), and their average
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NOs™ concentrations were 115.4 = 197.6 uM (n = 53). (Figure 5.10). The rest of the wells had
average NOj3™ concentrations of 6.0 + 32.9 uM (n = 154). For these high concentration wells,
winter had the significantly highest concentrations (223.7 + 316.6 uM), while summer had the
significantly lowest (33.0 + 26.8 uM) (ANOVA) (Figure 5.9). For the other wells, winter had the
significantly highest concentrations (13.2 £ 58.9 uM) while fall had the lowest (1.1 £ 0.9 uM).

The overall average isotope composition of the groundwater was §'°N = 29.3 + 14.3%o
and 880 = 20.5 + 6.3%o (n = 78). It is important to note here the “n” sample number since only
samples with high enough concentrations were analyzed. The isotopic composition of the three
high NO3™ wells were significantly different than the rest of the sites. High NO3™ well averages
were 8'°N =36.6 + 12.7%o and 5'%0 = 18.7 + 4.8%o while the rest of the wells average was §'°N
=20.7 £ 10.9%0 and §'%0=22.7 + 7.2%o. For both groups of wells, there was no significant
difference among seasons. The slope of the §!°N:5'%0 line of high concentration and remaining
wells was 0.13 and 0.89, respectively (Figure 5.4).

For all months and sites, septic/sewage was estimated as the dominant sources. Source
contributions estimates were similar between high and low concentration wells and the overall
contribution among wells was dog waste/gull guano (15 £+ 12%), wet deposition (10 £ 6%),
septic/sewage (63 £ 13%), and soil (12 + 9%) (Table 5.8) (Figure 5.11).
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Figure 5.9. Groundwater average NO3- concentrations by month.
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Figure 5.10. Groundwater average NO3- concentrations by site and pie chart of source
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Table 5.8. Nitrate isotopic composition (%o) and % source contribution to nitrate in ground
waters by season and site. SS, dg, wd, soil is the % contribution from sewage/septic dog

waste/gull guano. wet deposition and soil, respectively.

9 10

11

Season/Site  n= O®N-  8%0- % % % % % % % %
NOs NO3s SS error  dg error  wd error  soil error
All 78 29.3 20.5 63 13 15 12 10 6 12 9
winter 23 32.0 22.2 69 12 13 10 8 6 10 8
spring 24 27.3 185 45 17 26 20 12 9 17 13
summer 19 26.8 23.2 71 11 12 9 8 6 10 7
fall 12 321 16.9 67 12 13 10 9 6 11 8
1 17 46.7 20.0 73 10 11 8 7 5 9 7
2 9 22.2 19.5 52 16 21 17 11 8 15 11
3 6 14.5 19.9 38 17 29 21 13 9 20 15
4 1 215 215 75 10 10 7 7 5 8 6
5 2 14.7 20.0 40 17 27 17 14 10 20 14
7 2 20.3 23.7 72 11 11 8 8 5 9 7
8 2 23.8 24.8 81 8 7 6 5 4 6 5
9 12 35.5 17.4 49 17 23 19 12 8 16 12
10 6 19.5 235 69 12 13 10 8 6 10 8
11 1 29.1 29.1 88 5 4 3 3 2 4 3
13 13 24.5 18.0 53 16 21 17 11 8 15 11
14 7 24.9 23.2 75 10 10 7 7 5 8 6
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Winter (n = 23) Spring (n = 24) Summer (n=19) Fall(n=12)

815N-NO;~ 8'80-NO; Sew/Sep Dog/gull Wet Dep Soil
All 29.3%o 20.5%  63+13% 15+12% 10+£6% 12+9%
Winter 32.0%o 222%  69+12% 13+10% 8+6%  10+8%
Spring 27.3%0 18.5%0  45+17% 26+20% 12+£9% 17+13%
Summer  26.8%, 232%  T1£11% 12+£9% 8+6% 10+7%
Fall 32.1%o 16.9%0  67+12% 13+10% 9+6%  11+8%

All(n=78)

Figure 5.11. Ground water NO3- estimated source % contributions throughout duration of
sampling and for each season.

5.4.2. Ammonium Spatial and Temporal Variations
5.4.2.1. Ammonium Surface Water

The average NH4" concentration of surface water samples was 4.9 = 9.4 uM (n = 300) .
Averages were lowest in the summer (2.2 £ 2.0 uM) and highest in winter (3.8 £ 3.8 uM) with
the averages being significantly different (p = 0.007) (Figure 5.12). There were no significant
differences across sites with the exception of S1 (11.4 + 13.4 uM) being significantly higher than
a few sites, but it should be noted that this is the only bay surface sample as opposed to all others
being Gulf of Mexico surface sites (Figure 5.13).

Average §'°N-NH4" values were 13.1 = 6.1%o (n = 66). There is less data due to the 3 pM
threshold for isotopic analysis and the minimal data across all surface sites does not allow for a
systematic comparison across sites. There are no significant differences across seasons except
fall 16.7 £ 4.0%o is significantly higher than winter (11.2 £ 6.3%o) (p = 0.012).
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Figure 5.12. Surface water average NH4+ concentrations by month.
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Figure 5.13. Surface water average NH4+ concentrations by site.
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5.4.2.2. Ammonium Porewater

The average NH4" concentration of porewater samples was 27.7 = 40.6 uM (n = 192).The
three highest porewater sites (i.e., 14, 16, 19) have a significantly higher average concentration
(49.9 + 67.3 uM) than average of the rest of the sites’ average concentration (20.7 = 23.6 uM) (p
=0.00002) (Figure 5.15). There were no significant differences between seasons except fall
(18.6 = 26.4 uM) was significantly lower than spring (31.5 = 28.3 uM) (p = 0.03) (Figure 5.14).

Average §'°’N-NH4" values were 10.6 £ 6.3%o (n = 138). There was no significant
difference between sites except between the highest (site 9: 12.9 + 4.0%0) and the lowest site (site
14: 7.0 = 8.0%0) (p = 0.01). There was no significant difference among seasons except spring is
significantly lower than all other seasons (7.8 + 7.3%o) (p < 0.02).
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Figure 5.14. Porewater average NH4+ concentrations by month.
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Figure 5.15. Porewater average NH4+ concentrations by site.

5.4.2.3. Ammonium Groundwater

The overall average NH4" concentrations of groundwater samples were 158.9 + 345.2
uM. The outlier of 3707 pM for the April W11 sample was removed during spatial and temporal
analysis (Grubbs test, p < 0.01). The well concentrations fell into three tiers with the W5 and W7
average (507.8 + 335.8 uM) being significantly higher than the average for wells 3, 10 and 11
(118.4 + 108.1 uM) and those wells being significantly higher than wells 1, 2, 4, 8, 9, 13, and 14
(41.7 £123.4 uM) (ANOVA; p <0.0001) (Figure 5.17). The highest tier had high concentrations
in the summer (726.1 + 580.0 uM) as did the second tier (179.4 + 210.4 uM) but summer
concentrations were not significantly different from other seasons (Figure 5.16). The lowest
concentration tier had very significantly higher concentrations in the summer (156.1 £+ 264.2
uM), specifically driven by the month of June.

Average 8'"°N-NH,4" values were 10.9 £ 8.3%o (n = 116). Spring (7.6 £+ 7.8%o) was
significantly lower than all other seasons (p < 0.02) and winter (10.3 £ 9.4%o) is significantly
lower than fall (14.9 £+ 6.2%o)(p = 0.02). §'"°N-NH,4" values for the three tiers were 6.8 £ 5.1%o
(highest concentration tier), 10.5 £ 8.8%o (next highest), 15.0 £+ 8.1%o (lowest) with all three tiers
being significantly different (p < 0.05).
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Figure 5.16. Groundwater average NH4+ concentrations by month. *Qutlier 3707 uM at well
11 not pictured.
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Figure 5.17. Groundwater average NH4+ concentrations by site. *Outlier 3707 uM at well 11
not pictured.
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5.4.3. DON Spatial and Temporal Variations

5.4.3.1. DON Surface Water

The average surface water DON concentrations were 7+ 5 uM (n = 300). Fall (10 + 4
puM) and summer (9 = 4 pM) had significantly higher concentrations than winter (5 £ 5 uM) and
spring (7 + 6 uM) p <0.01) (Figure 5.18). Site 1 was the only bay surface water site and had the
highest average concentration (12 + 9 pM). Surface water sites 14 and 2 were the highest (9 + 6
uM) and lowest (4 + 4 uM) concentrations of Gulf surface water, respectively but were not
significantly different (Figure 5.19).

Surface water samples had average §!°N-DON isotopic values of 5 + 5%o (n = 208).
Summer values (7 £ 3%o) are significantly higher than fall (4 £ 3%o) and winter (4 + 4%o) (p <
0.0001). Most sites had average values which were not significantly different but the highest
value site 2 (7 = 12%o) and lowest value site 6 (2 = 3%o) were significantly different than several
sites.
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Figure 5.18. Surface water average DON concentrations by month.
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Figure 5.19. Surface water average DON concentrations by site.

5.4.3.2. DON Porewater

Average porewater DON concentrations were 7 £ 8 uM (n = 192). There were no
significant differences between fall (8 £ 8 uM), winter (8 = 10 uM), spring (7 = 8§ uM), and
summer (7 = 7 uM) seasons (Figure 5.20). Most sites had average concentrations which were
not significantly different but the highest value site 10 (14 = 13 uM) and lowest value site 15 (1
+ 2 uM) were significantly different than several sites (Figure 5.21) (p < 0.05).

Porewater samples had average 8'°N-DON isotopic values of 5 + 5%o (n = 113). There
were no significant differences between seasons. Most sites had average values which were not
significantly different but the highest value site 19 (8 + 10%o) and lowest value site 15 (4 £ 3%o)
were significantly different than several sites (p < 0.05).
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5.4.3.3. DON Groundwater

Average DON groundwater concentrations were 21 £ 58 uM (n =207). Well
concentrations were separated into two tiers, with wells 5 and 7 having significantly higher
average concentrations (48 £ 123 uM) than the other wells (15 + 29 uM) ( p =0.002) (Figure
5.23). Despite winter (29 = 71 uM) and spring (30 + 77 uM) averages being noticeably higher
than summer (7 = 10 uM) and fall (8 £10 uM), the large range in each season leads to no
significant difference across seasons. (Figure 5.22). The wide ranges are driven by high
concentrations in some wells in December 2022 and April 2023.

The average 6'°N-DON values of groundwater samples were 3 = 11%o (n = 92). Many
samples did not have high enough concentrations for isotope analysis (> 3 uM). In addition,
samples that had [NO3"]/[TDN] over 80% were not included in isotope analysis due to enhanced
error in 8"’ N-DON back calculation at these ratios. Although winter values were noticeably
higher, the range in values led there to be no significant difference across seasons. Site 4 had the
highest average value (9 = 15%o) and site 11 had the lowest value (-3 £ 8%o) and were
significantly different from each other p = 0.03.
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Figure 5.22. Groundwater average DON concentrations by month.

114



5.4.4. Ancillary Data

Nitrate, ammonium and dissolved organic nitrogen concentrations data were investigated
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Figure 5.23. Groundwater average DON concentrations by site.
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with respect to ancillary measurements (e.g.,) Correlation matrix and p significance matrix are
included as Table 5.9, Table 5.10, Table 5.11, Table 5.12, Table 5.13, and Table 5.14 and
organized by matrix — surface water, pore water, and groundwater.

Table 5.9. Correlation matrix for surface water. Numbers in each cell represent the correlation
coefficient “R” and a positive or negative relationship. DTW is depth to water and DO is
dissolved oxygen.

NO; | NOy NH,* SN- §180- SN- S15N- DON Temp DO Salinity

NO3 NO3 NH4+ DON

NOy 1.00

NO» 0.07 1.00

NH, 0.10 0.17 1.00

S"N-NOy -0.03 0.06 0.003 1.00

5%0-NOy -0.22 -022 -0.04 0.54 1.00

O"®N-NH, | -0.75 -0.30 0.19 0.20 0.07 1.00

3N-DON | 0.04  0.69 0.16 0.06 -0.14 0.38 1.00

DON -0.14 -0.05 -0.24 0.09 -0.01 -0.19 0.02 1.00

Temp -0.16 0.08 -0.13 0.29 -0.02 0.06 0.20 0.19 1.00

DO 0.16 0.00 0.14 -0.31 -0.13 -0.12 -0.17 0.03 -0.63 1.00

Sal -0.19 -0.14 -0.26 0.08 0.11 0.24 0.08 -0.16 0.28 -0.52  1.00

pH 0.03 -0.01  -0.03 -0.17 -0.17 0.13 -0.07 0.15 -0.24 0.40 -0.12
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Table 5.10. Probability (p) value correlation significance matrix for surface water. Numbers in
each cell represent the p-value of the correlation. Numbers in each cell represent the p-value of
the correlation. Light blue to dark blue values indicate significant negative correlations
increasing in magnitude with darkness. Light purple to dark purple values indicate significant
positive correlations increasing in magnitude with darkness.

NO; NO, NH,* S15N- 5180- S15N- S15N- DON Temp DO Salinity
NOs NOs NH,* DON
NO3’
NO, 0.2200
NH,* 0.0900 | 0.0033
3N-NO3 0.7600 0.3030 0.9570
5*0-NOs 0.0220 0.0220 0.6810
0.574
SO*N-NH,* 0.0136 0.1240 0.1047 O
0.148
8"®N-DON | 0.5700 0.0220 05370 O 0.0015
.
DON 0.0160 0.3900 03540 0 0.1240 0.7770
0.827
Temp 0.0058 0.1700 0.0250 ' 0.0020 O 0.6300 | 0.0041 0.0010
0.180
DO 0.0058 1.0000 0.0159 0.0011 O 0.3330 0.0151 0.6070
0.257
Sal 0.0010 0.0159 04110 0 0.0504 0.2550  0.0058
0.078 -
pH 0.6850 0.8920 0.6850 0.0786 6 0.2940 0.2680 0.3440 0.0010 0.1037

Table 5.11. Correlation matrix for pore water. Numbers in each cell represent the correlation
coefficient “R” and a positive or negative relationship. DTW is depth to water and DO is
dissolved oxygen.

NOs | NOy NH,* SN- 5'80- SN- S°N- DON Temp DO Salinity
NO; NO;y NH,* DON

NOs(uM) | 1.00
NO, (M) | 036  1.00

NH;/@M) | -0.20 -0.15  1.00

§°N-NO; | -0.11 -0.05 0.32 1.00

5°0-NO; | -0.25 -0.16 035  0.86 1.00
§™N-NH; | -0.06 028 -0.03 -0.39 -050  1.00

O0"“N-DON | 0.33  0.17 -0.19 0.01 -0.10 0.10 1.00

(DM(RAI\)I -0.06 0.03 -0.07 0.00 -0.07 -0.18 0.23 1.00

Temp -0.19 0.15 -0.10 0.13 0.10 -0.05 0.00 0.08 1.00

DO 028 -0.02 -0.32 -0.46 -0.44 0.00 -0.02 -0.10 -0.25 1.00

Sal -0.04 0.12 -0.22 -0.05 -0.10 0.09 -0.03 0.09 0.37 0.14 1.00
pH 003 -0.17 -0.10 -0.30 -0.35 -0.18 -0.09 0.16 -0.12 0.12 -0.16

Table 5.12. Probability (p) value correlation significance matrix for pore water. Numbers in each
cell represent the p-value of the correlation. Numbers in each cell represent the p-value of the
correlation. Light blue to dark blue values indicate significant negative correlations increasing
in magnitude with darkness. Light purple to dark purple values indicate significant positive
correlations increasing in magnitude with darkness.
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Salinit
NO; | NO; |NH, |s5n- |s%0- |s5N- |os5N- | DON | Temp | DO y
NOs NOs NH,* DON
NO3’
NOZ_
NH,* 0.0062 0.0410
0.00
S"N-NOs 0.3422  0.6680 | 48
0.00
3¥0-NOy 0.0294 0.1674 | 19
0.72
8"®N-NH,* | 0.4878 = 0.0010 98 0.0005
0.04
6"N-DON | 0.0004 | 0.0758 68 0.9370 0.3901  0.2986
0.34
DON 0.4159 0.6844 24 0.9713 0.5479 | 0.0367 0.0156
0.17
Tem 0.0094 0.0410 45 0.2630 0.3901 0.5647 0.9611 0.2777
DO 0.7864 0.9826 0.8357 0.1745 | 0.0006
0.00
Sal 0.5878 0.1028 @ 26 0.6680 0.3901 0.2992 0.7557 0.2218 0.0567
0.17
pH 0.6844 0.0204 45 0.0085 0.0019 0.0367 0.3498 0.0291 0.1028 0.1028 0.0291

Table 5.13. Correlation matrix for groundwater. Numbers in each cell represent the correlation

coefficient “R” and a positive or negative relationship. DTW is depth to water and DO is
dissolved oxygen.

NOs; | NO; NH,* S55N- 580- S55N- S5N- DON | DTW | Temp DO Sal

NO3 NO3 NH4+ DON

NOy 1.00

NO, 0.42 1.00

NH,* -0.11  -0.11 1.00

6"N-NO; | 0.18 0.01 -0.39 1.00

5%0-NOy -0.35 -0.30 0.13 0.22 1.00

S8"N-NH,* | 0.18 0.00 -0.12 0.00 -0.24 1.00

8"N-DON | 0.25 0.08 -0.13 0.22 -0.18 -0.06 1.00

DON -0.01 0.02 -0.06 -0.17 -0.15 -0.39 0.05 1.00

DTW 0.10 0.03 -0.21 0.62 -0.11 0.37 0.18 -0.19 1.00

Temp -0.12 -0.12 -0.04 -0.07 -0.03 0.26 0.07 -0.13  0.18 1.00

DO -0.05 -0.14 -0.06 0.21 0.04 0.12 -0.07 0.01 0.26 0.12 1.00

Sal -0.13  -0.09 0.34 -0.08 0.24 -0.30 -0.20 0.11 -0.36 0.01 0.01 1.00

pH 0.14 -0.03 -0.04 0.14 0.03 -0.18 -0.16 -0.06 014 -0.08 -0.02  -0.05

Table 5.14. Probability (p) value correlation significance matrix for groundwater. Numbers in

each cell represent the p-value of the correlation. Numbers in each cell represent the p-value of
the correlation. Light blue to dark blue values indicate significant negative correlations
increasing in magnitude with darkness. Light purple to dark purple values indicate significant
positive correlations increasing in magnitude with darkness.
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NOy

NH,* 0.1090 0.1224

O"™N-NO; | 0.1148 0.9182 | 0.0004

30-NO; | 0.0017 0.0076  0.2566 0.0529

O"N-NH,* | 0.0542 0.9999  0.2015 0.9999 0.0343
ON-DON | 0.0157 0.4459  0.2142 0.0529 0.1148 0.5241

DON 0.9148 0.775%6  0.3916 0.1899 0.6341
0.006
DTW 0.1372 0.6701 = 0.0026 0.3377 0.0843 ' 5
0.062 = 0.009
Temp 0.0842 0.0858 0.5681 0.5425 0.7943 | 0.0050 0.5049 5 6
0.886 | 0.000 @ 0.085
DO 0.5005 0.0447 0.3916 0.0650 0.7281 0.2015 0.5049 6 2 8

0.115 0.886
Sal 0.0636 0.1983 0.4863 0.0343 0.0011 0.0546 5 6 0.886

0.391 0.044 0.198
pH 0.1094 0.6686  0.5681 0.2215 0.7943 0.0542 0.1255 6 7 3 0.776  0.475

5.5. Discussion

5.5.1. Nitrate

5.5.1.1. Nitrate surface water

The average NOs~ concentrations in surface water samples were 3.4 = 5.2 uM. While few
studies have extensively measured nutrients along the shorelines of barrier islands, these
concentrations are slightly higher than those observed offshore in the northern Gulf of Mexico
(1.46 £ 6.04 uM; Cardona et al., 2016) and fall within the range of global ocean (0-35 uM) and
coastal ocean concentrations (0—5 uM; Garcia et al., 2024). Seasonal trends revealed
significantly higher concentrations during winter (5.2 + 7.2 uM), likely due to reduced
assimilation. However, the 6'°'N-NOs™ to 8'*0O-NOs™ slope of 1.04 suggests active assimilation
and/or denitrification processes during this period. Marine nitrification, which tends to increase
in winter as phytoplankton experience greater light limitation and create less competition for
nitrate, may contribute to this signal (Zakem et al., 2018). However, the higher nitrate
concentrations observed in winter are more likely attributable to source loading. November and
December 2022 experienced relatively high precipitation (~20 cm), which may have resulted in
nitrate input via terrestrial or groundwater sources. A lag in delivery from groundwater could
explain the distinct peak in nitrate concentrations observed in January 2023 (14.7 = 13.8 uM). In
other seasons, lower nitrate concentrations likely resulted from increased assimilation due to
higher phytoplankton activity, as well as enhanced denitrification. Warmer temperatures and
reduced dissolved oxygen (DO) levels, which create prime conditions for denitrification, likely
contributed to these trends. Notably, nitrate concentrations were negatively correlated with both
DO and temperature (p = 0.006). DO levels were significantly lower during spring, summer, and
fall, with the lowest values observed in summer. Although nitrification can occur in the euphotic
zone alongside these processes and potentially decouple the expected ~1:1 ratio from
denitrification and assimilation (Casciotti and Buchwald, 2012; Granger and Wankel, 2016), the
combination of low DO and low nitrate concentrations in warmer months likely dominates. This
is consistent with reports of marine denitrification slopes as low as 0.5 in such conditions.

Surface water sites were statistically similar for the most part (average 3.2 uM) but sites
1 12 14, 19, and 14 had the highest average NO3™ concentrations. Site 1 is the only site on the
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Trinity Bay is in a more densely populated area and is subject to loading from the San Jacinto
River and Houston Ship channel. The other high sites are adjacent to channels accessing the Gulf
of Mexico. Dredging can weaken NO3™ removal from a system for several years (Dong Jing et
al., 2013). Multiple studies have confirmed increased total dissolved solids and NO3
concentrations after dredging has occurred, where dredged sediment can release heavy metal and
organic contaminants and bury benthic organisms, which can cause long-term effects like
eutrophication and pollution (Zhang et al., 2010; Liu et al., 2019). Inlets themselves exchange
nutrients with the ocean and can deliver move concentrated nutrients to the coastal ocean.

0N values were higher in spring and summer, with the source apportionment model
indicating a greater relative contribution of septic and sewage loading during these seasons. This
is consistent with increased population density in tourist destinations during spring and summer,
which likely strains septic and wastewater infrastructure. Overburdened or malfunctioning
systems may contribute to elevated nitrate loading during these high-tourism periods.
Interestingly, contributions from dog manure and gull guano were highest in winter. According to
the Houston Audubon Society, fall migration along the Texas upper coast begins as early as July
and continues through November for shorebirds and gulls, many of which overwinter in this
region (Houston Audubon Society, 2023). The elevated contribution of dog and gull waste during
winter likely reflects the culmination of migration and the presence of overwintering birds that
make the Texas Coast their temporary home. Sites 4 and 5 exhibited the highest average
percentage of septic/sewage contribution. Although linking inland activities to adjacent offshore
water quality is challenging due to the heterogeneity of groundwater flow, it is notable that these
sites are in direct transects that include a condominium complex and a large RV park, both of
which utilize septic systems. Sites 6 through 12 and site 17 showed the highest relative
contributions from dog and gull waste (~30%), suggesting stretches of beach where bird
populations may be concentrated. Previous studies have shown that dogs and gulls can contribute
significant amounts of fecal bacteria to surface and pore waters, an issue that has been
increasingly observed along beaches in California and Florida (Goodwin et al., 2016; Converse
et al., 2012). Despite these contributions, nitrate concentrations at these sites generally remain
within the range of typical marine levels, suggesting that contamination from these sources may
not be severe.

Table 5.15. Seasonal surface, pore, and groundwater nitrate 615N vs 6180 plot characteristics
including number of samples (n), correlation coefficient (R), probability value (p) and likely
nitrate processes associated with these characteristics.

Season Slope n R p Primary processes indicated

Surface water

Fall Not available (n = 3)

Winter 1.04 54 0.59 <0.0001 denitrification/assimilation/nitrification
Spring 0.76 29 0.73 <0.0001 denitrification/nitrification/assimilation
Summer 0.58 22 0.52 0.0091 denitrification/nitrification/assimilation
Porewater

Fall 1.18 10 0.68 0.015 denitrification/DNRA

Winter 1.38 32 0.90 <0.0001 denitrification/DNRA

Spring 0.77 16 0.85 <0.0001 denitrification/nitrification

Summer 15 19 0.91 <0.0001 denitrification/DNRA

Groundwater high concentrations
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Fall 0.25 10 0.85 0.0005 anammox; denitrification/nitrification
Winter 0.25 12 0.71 0.0044 anammox; denitrification/nitrification
Spring 0.32 11 0.87 <0.0001 anammox; denitrification/nitrification
Summer -0.12 9 0.39 0.2357 anammox; denitrification/nitrification
Groundwater low concentrations

Fall Not available (n = 2)

Winter 0.95 11 0.82 0.0003 denitrification/nitrification

Spring 0.33 13 0.50 0.0577 nitrification/denitrification

Summer 0.24 11 0.56 0.0515 nitrification/denitrification

5.5.1.2. Nitrate porewater

The overall average porewater NO3™ concentration was 4.3 = 7.1 uM, slightly higher than
the surface water average of 3.4 £ 5.2 uM. Elevated NO;™ concentrations in porewater relative to
surface waters are often attributed to the nitrification of NOs™ derived from re-mineralized NH,"
in sediments, which is subsequently assimilated in surface waters (Ahrens et al., 2020). The
observed negative correlation between NO3; and NHa4" (p = 0.0062) supports this process, as
NH4 decreases while NOs™ increases. Additionally, the strong correlation between NH4" and
dissolved oxygen (DO; p <0.0001) in porewater further suggests active nitrification. However,
the similarity in NOsz concentrations between porewater and surface water points to continued
circulation and exchange between these two reservoirs, particularly in the dynamic shore break
zone where samples were collected. This is further corroborated by the §'°’N-NOs™ values in
porewater (14.7 + 4.3%o), which were closely aligned with those in surface water (13.5 £ 3.2%o).

As in surface waters, porewater NO3™ concentrations were highest in winter (7.6 = 12.5
puM). This may be linked to nutrient inputs from groundwater discharge, driven by high rainfall
in November and December 2022.

Interestingly the slope of §'°N and §'30 in fall winter and summer was higher than the
expected denitrification associated slopes which normally do not exceed 1. Dissimilatory nitrate
reduction to ammonium (DNRA) may be a contributing factor, particularly under more anoxic
conditions in sandy coastal sediments, where it can account for over 50% of total NOs™ reduction
(Wankel et al., 2007; Hellemann et al., 2020). However, the isotope effects of DNRA remain
uncertain (Inamdar et al., 2024). A similar competition between nitrification and denitrification
in marine systems can produce A§'30:A8'N slopes greater than 1, particularly when the
difference between the 8'30 of subsurface NO3~ and seawater is small. This occurs because, at
any given fractionation factor, the §'%0 of nitrified NOs"is greater than the %0 of NOs™ removed
by denitrification (Granger and Wankel, 2016). This may also be the case when the §'*0 of the of
DNRA-processed NO;"is greater than the §'30 of NOs” removed by denitrification. In summer,
however, the slope was below 1 (0.77), likely reflecting a shift toward marine denitrification as
the dominant process. The lack of significant differences in NOs™~ concentrations across
porewater sites suggests general homogeneity in porewater conditions or continuous mixing with
well-circulated Gulf waters.

85N values were lowest in fall and winter (13.2 + 2.3%o and 14.0 £ 6.8%o, respectively)
and highest in summer (16.3 + 2.7%o). These seasonal trends align with surface water patterns,
where higher septic/sewage contributions in summer are associated with increased human
populations, and elevated dog/gull contributions in fall and winter reflect migratory patterns.
Sites 8, 9, 10, 11, and 15 exhibited the highest average dog/gull contributions (~30%), which
were consistent with co-located surface water sampling results. Additionally, porewater site 4
showed the highest septic/sewage contribution (60%), with co-located surface water displaying
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similar source contributions. This further underscores the potential for continued nitrate
exchange between surface and pore waters. The §'°N source contribution mixing model indicates
that septic/sewage was the primary nitrogen source, both spatially and temporally, across the
study region. This suggests that wastewater mitigation strategies could be the most effective
approach for reducing NOs™ loading in the area.

5.5.1.3. Nitrate groundwater

The average NOj3™ concentration across all wells was 34.4 + 113.5 uM; however, three
wells (W1, W9, and W13) exhibited significantly higher concentrations, averaging 115.4 £ 197.6
uM, compared to the remaining wells, which averaged just 6.0 = 32.9 uM. According to the
EPA, low levels of NOs™ occur naturally in groundwater, but concentrations above 16 M are
indicative of human activities, while levels exceeding 48.4 uM suggest contamination
(Chaudhuri et al., 2012). The EPA’s maximum contaminant level (MCL) for NO3 in drinking
water is 161.3 uM, above which groundwater is considered unsafe for consumption and poses a
risk for methemoglobinemia (Powlson et al., 2008). This is particularly concerning in regions
reliant on private wells for water, as they are not federally regulated, especially in rural areas
with poor water quality (Knobeloch et al., 2000). The three high-concentration wells exceeded
the MCL. While these wells are shallow and not intended for personal use, their contamination
raises concerns for nearby private well owners, who should exercise caution. Interestingly, the
high-concentration wells showed significantly elevated NO;3™ levels in winter, with the lowest
concentrations observed in summer. This seasonal trend may be rainwater driven, as seen with
elevated porewater and surface water NO3™ concentrations during winter. The extremely high
concentrations in January 2023 likely reflect groundwater flow influenced by heavy rainfall in
November and December 2022. Well 1, located inland along the bay coastline and serviced by
municipal sewage, displayed high NOslevels following rain events. This may suggest the
municipal infrastructure's inability to handle heavy rainfall, potentially indicating leakage or
other vulnerabilities. Wells W9 and W13, situated near septic fields, may have experienced septic
system saturation from the heavy rains, compromising drainage and reducing the septic system’s
ability to effectively treat sewage.

Plotting 8'°N vs. 8'%0 data revealed two distinct processing categories in the wells: one
associated with 3'°N values over 30%o and another with §'*N values below 30%o. Samples with
8'°N values under 30%o showed no significant correlation between In(NO3") and §'°N- NOs", but
their §'°N vs. §'%0 slope was 0.89, indicating a primarily denitrification-driven process. In
contrast, samples with §'°N values over 30%o had a very low §'°N vs. 830 slope (0.13),
suggestive of competing processes: nitrate production through oxidation and nitrate loss through
reduction.

Given the low DO levels in the wells (3.2 + 2.1 mg/L), the oxidation process is likely
dominated by anammox, a significant oxidation pathway in aquifers (Clark et al., 2008; Erler et
al., 2008; Robertson et al., 2012; Granger and Wankel, 2016). Anammox can result in substantial
fractionation, potentially explaining the high §'°N values. Brunner et al. (2013) proposed that
nitrate production via anammox exhibits an inverse kinetic fractionation effect of -31%eo.
Furthermore, anammox processes can decouple oxygen and nitrogen isotopes (Dédhnke et al.,
2015), which could explain the anomalously low §'°N vs. §'%0 slope observed in the >30%o
samples.

After correcting the well sample §'°N values for their respective processing isotope effects,
these corrected values were incorporated into the isotope source apportionment model. Results
indicated that sewage/septic systems were the primary nitrate source (~63%) across both high-
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and low-concentration wells. Again, this suggests that wastewater mitigation strategies could be
the most effective approach for reducing NO3 loading in the area.

5.5.2. Ammonium

5.5.2.1. Surface water NH;*

The average NH4" concentration in surface water samples was 4.9 = 9.4 uM, notably
higher than levels typically found in open ocean environments (approximately 1 uM). In such
environments, NH4" is rapidly assimilated by primary producers or oxidized through nitrification
almost as quickly as it is produced (Altabet, 2006). Seasonal trends in NH4" concentrations were
observed, with the lowest averages in summer (2.2 = 2.0 uM) and the highest in winter (3.8 + 3.8
uM), likely driven by changes in primary producer populations and associated assimilation.
Spatially, no significant differences were observed across sites, except for S1, which had a high
average concentration of 11.4 £ 13.4 uM. S1 is unique as it is located on Trinity Bay rather than
the Gulf of Mexico. It is influenced by higher population densities, inputs from the San Jacinto
River, and activities associated with the Houston Ship Channel.

The average 6'°N-NH4" value was 13.1 + 6.1%o. Isotopic data for NH4" in surface waters
are generally limited due to analytical challenges, but studies with sufficient NH4" concentrations
for isotopic analysis suggest 8'°N-NH4" values in marine environments typically range from
+10%o to +29%o. These elevated values, combined with low NH4" concentrations, often indicate
fractionation from consumptive processes such as nitrification or ammonium assimilation
(Sigman and Casciotti, 2001). Seasonal differences in §'°N-NH4" were minimal, except for fall
(16.7 £ 4.0%0), which was significantly higher than winter (11.2 £ 6.3%o). The lower winter
8!°N-NH4" values may reflect reduced fractionation due to a lack of uptake and nitrification
activity during this period.

5.5.2.2 Porewater NH,/"

Ammonium (NH4") was the dominant nitrogen species in porewater, with average
concentrations of 27.7 £ 40.6 uM. This is consistent with findings from other barrier island
studies, such as Ahrens et al. (2020), which reported porewater NH4" concentrations ranging
from 0 to 163 uM. NH4" dominance in most anoxic sediment porewaters is attributed to the
degradation of organic nitrogen through remineralization and dissimilatory nitrate reduction to
ammonium (DNRA) (Zhao et al., 2023). Remineralized nutrients in porewater are subsequently
nitrified and assimilated by primary producers in surface waters. Generally, fine sediments
promote NH4 generation due to their low oxygen levels and high organic matter content
(USEPA). Porewater NH4" concentrations were significantly higher than those in surface waters.
While this contrasts with the nitrate discussion, which suggested consistent recirculation between
porewater and surface water, it may indicate high turnover rates of NH4" once in the water
column. Three porewater sites (14, 16, and 19) exhibited higher average NH4" concentrations
(49.9 £ 67.3 uM) compared to the remaining sites (20.7 = 23.6 uM). These sites' proximity to
channels likely exposes them to direct nutrient inputs. Seasonally, NH4" concentrations were
highest in summer and spring, potentially due to increased temperatures and higher primary
productivity, which provide more organic matter for microbial degradation into NH4". Spring
also had significantly lower §'°N-NH4" values (7.8 £ 7.3%o), likely reflecting direct
remineralization from phytoplankton (5.1 & 1.1%o) (Sachs et al., 1999), which typically exhibit
0'*N values consistent with this range. The minimal fractionation (+1 to -2.3%o) associated with
remineralization further supports this interpretation. When examining the relationship between
In(NH.4*) and §'>N-NH4" by season, no significant correlation was observed in spring or winter.
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However, both summer and fall displayed a strong positive correlation (p < 0.0001), with higher
8'"N-NH4" values corresponding to higher NH4" concentrations. The steep slope or isotope effect
(e = 13.6%0) suggests a process like DNRA as the dominant mechanism, consistent with
interpretations from nitrate data. If DNRA is the primary process, this provides valuable insight
into the yet-uncertain isotope effects associated with DNRA.

No significant differences were observed between sites, except for the highest (site 9: 12.9 +
4.0%o0) and lowest (site 14: 7.0 + 8.0%o) §'°N-NH4" values. This variation may reflect the degree
of processing the NH4" pool has undergone. For example, site 9 exhibited much lower NH4"
concentrations (21.5 = 20.8 uM) compared to site 14 (51.0 = 40.3 uM). If the lower
concentration at site 9 is due to more extensive processing of NH4", the remaining NH4" pool at
this site would be expected to be enriched in §'°N.

5.5.2.3. Groundwater NH4*

Groundwater in this study exhibited unusually high NH4" concentrations, averaging 158.9
+ 345.2 uM. For comparison, a similar study of two coastal wells in the Baffin Bay, Texas
watershed found much lower concentrations (1.6 + 2.3 uM). High NH4" concentrations can occur
during tourist seasons in coastal areas, often leading to the formation of a wastewater plume
(Potsma et al., 1992; Lapointe et al., 1990; O’Driscoll et al., 2014). Under aerobic conditions,
groundwater typically has NH4" concentrations of less than 11 uM. However, in anaerobic
environments, concentrations can increase by more than 10 times, and salinization of
groundwater can further raise ion concentrations, including NH4" (Rusydi et al., 2020). When
NH4" dominates in suboxic or anaerobic aquifers, it suggests the intrusion of wastewater or the
mineralization and decomposition of organic matter under anaerobic conditions (Szymczycha et
al., 2012). Increased salinity in groundwater in coastal areas has also been linked to seawater
intrusion or contamination from sewage or septic effluent (Bronders et al., 2012).

Groundwater concentrations in this study were grouped into three tiers. Wells W5 and
W7, which had significantly higher concentrations (507.8 £ 335.8 uM), were in the highest tier,
while wells 3, 10, and 11 (118.4 = 108.1 uM) were in the middle tier, and wells 1, 2, 4, 8, 9, 13,
and 14 (41.7 + 123.4 uM) were in the lowest tier. The highest tier wells were located near a
condominium complex septic field and a residential area served by on-site sewage facilities
(OSSFs), suggesting septic influences. The §'°N-NH4" values for these three tiers were 6.8 +
5.1%o (highest concentration tier), 10.5 + 8.8%o (middle tier), and 15.0 + 8.1%o (lowest tier),
indicating a relationship between 8'°N- NH4" values and NH4" concentrations. For comparison,
wastewater effluent directly sampled had a §'">N-NH4" value of +3.9 + 2.8%o (Cox, 2023), which
closely matches the 8'°N-NH4" value of 6.8%o for the high-concentration wells, suggesting a
direct source impact with minimal processing. As NHy4" is processed, for example through
nitrification or assimilation, microorganisms preferentially utilize the lighter N isotope. This
results in the remaining NHs* becoming enriched in the heavier °N isotope, thereby increasing
the 8'°N-NH4" value as NHa* concentrations decrease. Thus, the lower concentration wells will
have higher §'>N-NH4" values due to increased NHa* processing before reaching the water table.
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5.5.3. DON

5.5.3.1. Surface Water DON
Surface water average DON
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organic matter input from seawater, Figure 5.24. Surface water 1/[DON] vs §15N-DON

elevated microbial activity due to warmer
temperatures, and increased DON
production, as seen in other coastal areas
like the Gulf Coast of Florida (Ahrens et al., 2020; Lamb et al., 2012; Hansell and Carlson,
2001). Open ocean 5'°N-DON values typically average around 5 uM, which aligns well with this
study’s Gulf water data (5 £ 5%o). However, summer values (7 = 3%o) and corresponding
concentrations (9 = 4 uM) were significantly higher, suggesting an additional source outside of
the normal marine nitrogen cycle. To explore potential source mixing behind these summer
increases, a plot of 1/DON vs. §!°N-DON (with 13% of data excluded as outliers) revealed a
significant relationship indicating mixing (p < 0.0001) (Figure 5.24). A possible explanation is
conservative mixing between a low marine-produced endmember and a higher wastewater-
derived endmember (22 £ 7.9%o). Increased wastewater inputs during summer, as discussed in
previous sections, could contribute to this trend. Fall also showed higher DON concentrations (9
+ 4 uM) and a strong 1/DON vs. §'°N-DON correlation (p = 0.0003), but with lower §'*N-DON
values (4 £ 3%o). While this still indicates mixing, the lower §'>’N-DON values suggest a greater
contribution from the marine nitrogen cycle, particularly from the degradation of primary
producers in the fall.

Site 1 exhibited the highest average concentration of DON (12 + 9 uM) and was the only
bay surface water site, located on Trinity Bay, which is fed by San Jacinto Bay. Bays and
estuaries typically have higher concentrations of DON compared to coastal or open ocean waters,
and rivers also contribute to DON levels (Voss et al., 2013). Elevated DON concentrations in
estuarine systems have been observed in this region (Wetz et al., 2017). For example, San Jacinto
Bay, which supplies water to Site 1, has a reported average total Kjeldahl nitrogen concentration
of 120 uM (Wetz et al., 2019).

plot portraying potential mixing in the summer.

5.5.3.2. Porewater DON

Average porewater DON concentrations were 7 = 8 uM with no significant differences
between and most sites had average concentrations which were not significantly different from
eachother. The very limited previous studies investigating porewater concentrations show similar
results. A study conducted in the Gulf of Lawrence reported porewater concentrations between 8-
18 uM, while another study off the coast of North Carolina also reported that most porewater
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samples fell between 5 and 15 uM (Alkhatib et al., 2012; Taylor, 2005). These were not seasonal
studies.

The average porewater DON concentration was 7 = 8 uM, with most sites having average
concentrations that were not significantly different from one another. Previous studies
investigating porewater concentrations report similar findings. For example, a study in the Gulf
of Lawrence found porewater concentrations between 8 and 18 pM, while another study off the
coast of North Carolina reported that most porewater samples ranged between 5 and 15 uM
(Alkhatib et al., 2012; Taylor, 2005), although these studies were not seasonal in nature. The
average '°N-DON value in porewater samples was 5 £ 5%o, consistent with surface water values
and values reported for porewater in the Gulf of Lawrence (between 4%o and 7%o). There were
no significant differences across seasons, and most sites had average §'>°N-DON values that were
not significantly different. This suggests a well-mixed and homogeneous porewater environment
with respect to DON. Ammonium can be produced from DON through remineralization in
sediments. The positive correlation (p = 0.0367) between DON concentrations and §'°N-NH4"
supports evidence of remineralization in this system—specifically, as DON is consumed, the
S'"N-NH4" values increase. Additionally, a strong correlation (r = 0.017) between In[DON] and
8'SN-DON further corroborates this processing in the sediment. The resulting slope indicates an
inverse isotope effect of 1.6%o, which is minimal and falls close to the range suggested in the
literature (+1 to -2.3%o) (Yu et al., 2021; Mobius, 2013; Kendall et al., 2007).

5.5.3.3 Groundwater DON

The average DON concentration in groundwater was 21458 uM, with no significant
differences observed across seasons. DON concentrations in groundwater can be highly variable
and are influenced by several factors, such as depth to groundwater, proximity to groundwater
mounds, land use, distance to surface water bodies, and soil type (Wang et al., 2018).
Concentrations can range from as low as 7 uM to as high as 231 uM in silty and sandy loam
areas, with significantly higher concentrations observed in highly forested areas (Liu et al., 2022;
Xin et al., 2019). A study of groundwater DON in coastal aquifers of Massachusetts, with similar
land use (primarily residential or vegetated), found highly variable concentrations ranging from 5
to 182 uM (Kroeger et al., 2006). Another study in Baffin Bay, TX, located south of this study
region, reported an average DON concentration of 29.9 + 19.0 uM (Qiu et al., 2024).
Groundwater concentrations in this study were categorized into two tiers: wells 5 and 7 had
significantly higher average concentrations (48 + 123 uM) compared to other wells (15 £+ 29
uM). Ammonium and DON are the primary nitrogen species discharged into septic fields, and
wells 5 and 7 are located in a condominium complex serviced by OSSFs and in the backyard of a
home in a neighborhood also serviced by OSSFs, suggesting that septic systems may contribute
to the elevated concentrations. However, the isotopic signature of septic waste is typically high
(22 + 7.9%o), while the §'°’N-DON values in wells 5 (2 = 5%o), 7 (1 £ 6%o), and all other wells (3
+ 11%o) are lower. This suggests the presence of other sources and potential processing.

Some studies from estuaries in China have shown that samples with very low §'°N-DON
values (<1%o) are derived from soil-derived organic matter, which is depleted in §'°N-DON (Yan
et al., 2021). Additionally, low 8'°N values in particulate organic matter can be converted to
DON through decomposition, leading to a depletion of around 5%o (Casciotti et al., 2003). The
negative correlation between §'°’N-NH4" and [DON], along with the positive correlation with
In[DON], further supports the occurrence of remineralization (ammonification) in the
groundwater, leading to the production of NH4".
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5.5.4 Nitrogen Species, Water Levels, and Implications

Septic system malfunctions are increasingly linked to varying sea levels and more
frequent heavy precipitation events, both associated with fecal and nitrogen pollution (Powers et
al., 2021; Elmir, 2018). Rising water tables reduce the amount of unsaturated soil available for
wastewater filtration, diminishing the effectiveness of onsite sewage facilities (OSSFs). This
trend is supported by findings from this study, where [NO3] was positively (though insignificant)
correlated with depth to water (DTW), §!°N-NO;" was positively correlated with DTW, [NH4']
was negatively correlated (p = 0.0026) with DTW, and 8'°N-NH4" was positively correlated with
DTW. Septic discharge typically contains 70-90% NH4", and when there is more space between
the septic discharge field and the water table (i.e., greater DTW), there is more opportunity for
NH4" to be nitrified to NOs", which can then be denitrified to harmless Na(). In this scenario,
NH4" is processed before it reaches the water table, and any residual NOs™ that is not denitrified
to N2 would enter the groundwater with high §'°N-NO;" values due to partial denitrification. In
contrast, when DTW is low, septic discharge may directly reach the water table, causing
unprocessed NH4" to enter the groundwater at high concentrations with an isotopic signature
reflective of the septic source. This scenario likely explains the high NH4" concentration wells
with low 8'°N-NH4"values, similar to the wastewater NH4" isotopic signature (+3.9 £ 2.8%o)
(Cox 2023). The evidence suggests that the high NH4" concentrations, along with the lowest
DTW values, indicate compromised OSSFs, likely due to sea level variations, which could be a
significant issue in this region. For instance, while the exact depth of the OSSF units is unknown,
they must be at least 3 feet (0.9 m) from the soil’s surface. The average DTW of the monitoring
wells on the barrier island was approximately 1 m, with the high NH4" concentration wells
having an average DTW of around 0.7 m. This suggests that in some cases, the water table was at
or above the level of the septic drain field, allowing effluent to easily percolate into the
groundwater.

Coastal communities face increased risks of OSSF failures due to factors such as sandy,
porous soils, erosion, severe weather events, and the effects of sea level variations (Mallin,
2013). Furthermore, many OSSFs are old or undocumented, as permits were not required before
the Clean Water Act of 1972. These aging systems are more prone to malfunctions, which can
lead to contamination of groundwater and drinking water supplies with pathogens, nutrients, and
other harmful substances. While fecal indicator bacteria (FIB) can serve as indicators of failing
systems, it is crucial to identify and trace all potential sources of contamination, including
OSSFs, to fully understand their role in nonpoint source pollution. One effective approach is the
analysis of stable nitrogen isotopes in co-migrating nitrogen species within impacted waters.
This method can help determine the specific contribution of OSSFs to nutrient pollution.
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Nitrogen and groundwater level relationships

* [NH,*]is significantly negatively correlated to depth to water (p = 0.0026)

* [8'°N-NH,*]is significantly positively correlated with depth to water (p <=0.0001)

» [DON]is significantly negatively correlated to depth to water (p = 0.007)

* [NO;]is positively correlated with depth to water but the relationship is insignificant(p = 0.137)
* [8'°N-NO;7 s significantly positively correlated with depth to water (p <=0.0001)

Denitrifigation

I Il . NH,*
—1 " 70-90%

NH,*

' —> NH,*
70-90%

mngﬂ_ Denitrfidaci

Denitrifidation

N 3-

Groundwater Groundwater

Conceptual Diagram. High and low water table scenarios and their relationships to nitrogen
processing with respect to a septic field. Blue box provides specific details between water level,
salinity, and nitrogen species.
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6. INTEGRATED ASSESSMENT: GROUNDWATER TRACERS, BACTERIA, AND
NUTRIENT INTERACTIONS

Prepared by Roya Narimani, Ph.D., Allie Watson, Dorina Murgulet, Ph.D.
6.1. Analysis of FIB Behavior in the Studied Environments

Fecal indicator bacteria (FIB) loading hotspots in surface water tend to appear
consistently along coastal and inland water bodies, with some seasonal variations observed. For
example, in Figure 6.1, summer months (e.g., June through August) show a higher presence of
bacteria, possibly linked to increased rainfall, runoff, and tourism. Additionally, the higher
population density at the beach during these months may contribute to increased bacterial
contamination as more people visit the area, potentially leading to higher pollution levels.
Conversely, cooler months like February, November, and December display lower contamination
levels. Understanding these spatial and temporal patterns is critical for identifying sources of
bacteria, assessing environmental conditions, and implementing mitigation strategies to improve
water quality in the region (Figures 6.2 and 6.3).

6.1.1. Surface water relationships

Beyond seasonal variations in bacteria loading, another critical factor influencing
bacterial presence in surface waters is dissolved oxygen (DO), which exhibits strong negative
correlations with bacterial counts in certain areas. DO consistently showed a negative correlation
with bacteria counts in surface water across all areas and regardless of the type of data
transformations, with various strengths. For instance, DO was found to be important in
predicting bacteria counts after Boruta analysis in areas 1 and 4 after the data underwent
BOXCOX and logarithmic transformations. In area 1, DO showed a strong negative correlation
(p-value: 0.01; p-value: 0.01) with bacteria counts after BOXCOX and logarithmic
transformations, respectively. In area 4, DO showed a strong negative correlation with bacteria
after BOXCOX and logarithmic transformations (p-value<<0.01; p-value<<0.01). While DO
was an important predicting variable in these areas, it was not as significant in areas 2 and 3. In
area 2, with BOXCOX, logarithmic, and no transformation, DO had a weak negative correlation
with bacteria (p-value: 0.05; p-value: 0.06; p-value: 0.05, respectively), in addition to a rejected
status after Boruta analysis. Across all transformations in area 3, DO also negatively correlated
with bacteria and was rejected after Boruta analysis. The consistent negative correlation between
DO and FIB across all areas, especially in the warmer months, can be explained by metabolic,
decomposition, and nutrient-rich environmental processes. Higher temperatures reduce oxygen
solubility, leading to lower dissolved oxygen levels that can trigger algal blooms, which support
the growth of E. coli and enterococci in surface water (Tiefenthaler et al., 2008). In addition, FIB
consume oxygen during respiration and are often associated with elevated organic matter, which
amplifies microbial decomposition that depletes DO in areas with a high bacteria load. The
difference in the strength of correlations and predictive capability of DO for bacteria counts
across the surface water of different areas highlights that DO and FIB relationships can be
locality-specific and may be influenced by other environmental factors, such as nutrient levels,
salinity, and organic matter content (Badgley et al., 2019). Variability in land use, hydrology, and
water chemistry across areas can lead to differing strengths in the correlation between DO and
bacterial counts.
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Figure 6.1. Monthly bacteria contamination levels in surface Water. The average bacteria levels
across various monitoring locations are shown with color gradients. Red and orange markers
represent higher contamination levels.
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Another variable influencing FIB dynamics is chlorophyll-a (ch/-a), which demonstrated
positive correlations with bacteria in surface water in specific areas. Chl-a was a weak significant
predictor of FIB in surface water in multiple areas (area 1 and area 3) with positive correlations
under different transformations. In area 1, chl-a positively correlated with bacteria after
undergoing both BOXCOX, logarithmic and no transformations (p-value: 0.05; p-value: 0.05; p-
value: 0.05, respectively). In area 3, chl-a positively correlated with bacteria counts after a
logarithmic transformation (p-value: 0.05). Across both areas, chl-a was confirmed through Boruta
analysis, showing that the variable could be a significant predictor of FIB in these areas. The
positive correlation between FIB and ch/-a may be attributed to nutrient-rich waters and untreated
surface water or subsurface runoff to the gulf, which can contribute to algae blooms (source of c/l-
a) and elevated enterococci levels (Kelly et al., 2020).

In contrast, other environmental factors exhibited unique correlations in different areas.
Some areas exhibited unique variables that correlated with FIB and/or exhibited a predictive
potential for FIB in surface water. Unique to area 2, the logarithmically transformed dataset
showed relationships between FIB and radium isotopes (***Ra, ?*°Ra). *Ra had a strong negative
correlation (p-value<<0.01) with bacteria and ***Ra had a weaker negative correlation (r=-0.8, p-
value: 0.04). However, the above variables were rejected after undergoing Boruta analysis,
indicating that the variables are unimportant for predicting bacteria counts in this area. Distinct to
area 3, salinity consistently correlated positively with bacteria counts and a confirmed status after
Boruta analysis across all transformations (BOXCOX, logarithmic, and none). After undergoing a
BOXCOX transformation, salinity had a correlation of 0.5 (p-value<<0.01), a correlation of 0.5
(p-value<<0.01) after a logarithmic transformation, and a correlation of 0.4 (p-value<<0.01) when
no transformation was performed. In the original dataset with no transformations, ***Ra had a weak
positive correlation (R?=0.8, p-value: 0.02) with bacteria counts in area 4, as well as the predictive
potential for bacteria counts (Boruta status confirmed). In area 1, DIN was found to have a
moderate negative correlation with bacteria after undergoing BOXCOX and logarithmic
transformations. After the BOXCOX transformation was performed, the correlation of DIN with
bacteria was —0.5 (p-value: 0.03). After the data was transformed logarithmically, the correlation
of DIN with bacteria was —0.5 (p-value: 0.04). Despite the correlation between the two variables,
Boruta analysis rejected DIN, indicating that it was not considered an important feature in the
model for predicting bacteria counts. The spatially specific correlations observed herein
underscore the complexity of bacterial dynamics across regions.

After bacteria data underwent a logarithmic transformation, surface water chemistry
variables had several significant correlations. DO showed a strong negative correlation with FIB
(p-value<<0.01), while ORP had a weak positive correlation with FIB (p-value: 0.04). Like in
groundwater and pore water, salinity exhibited a strong positive correlation with bacteria in surface
water (p-value<<0.01). In surface water, only the nitrogen species NO:  showed a significant
relationship with bacteria, with a strong positive correlation (p-value<<0.01).

6.1.2. Groundwater relationships

Groundwater also exhibited distinct temporal and spatial patterns (Figure 15). Nitrogen
species likely play a prominent role in bacterial dynamics in groundwater. Both areas 3 and 4,
where well monitoring was available, a negative correlation between bacterial counts in
groundwater and nitrogen species was observed. In area 3, NOs;~ and NO;+NO:" exhibited
negative correlations across BOXCOX and logarithmic transformations. After a BOXCOX
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transformation, NOs~ had a weak correlation of —0.3 (p-value: 0.04), and NOs+NO-~ had a weak
correlation of —0.4 (p-value: 0.02) in area 3. Similar relationships were found after a logarithmic
transformation was performed on the area 3 dataset, with a NOs™ correlation of —0.4 (p-value: 0.03)
and a NOs+NO:" correlation of —0.4 (p-value: 0.03). The status of significant organic nitrogen
species in area 3 was rejected after Boruta analysis, indicating that these variables are not
significant for predicting FIB values in groundwater. In area 4, NH4" and DIN consistently showed
negative correlations in both transformed datasets. After a BOXCOX transformation, NH4* and
DIN showed a significant negative correlation to bacteria (p-value<<0.01 and p-value<<0.01) with
a confirmed Boruta status after analysis, highlighting the variables’ predictive ability for bacteria
in this area. Similar to the BOXCOX transformed dataset, a logarithmic transformation indicated
a significant negative correlation between NH4" and DIN with bacteria (p-value<<0.01 and p-
value<<0.01) and a confirmed Boruta status. This indicates that nitrogen species, while varying in
form, are inversely related to bacterial levels in groundwater across both areas. Analysis also
indicates that while nitrogen species have a negative correlation with bacteria in both areas, only
inorganic nitrogen species are significant in predicting bacteria values in area 4 groundwater.

While both areas demonstrate the relationship between nitrogen species and bacteria in
groundwater, the two study areas have their unique significant variables. Area 3 is characterized
by broader geochemical influences, including salinity, ORP, depth to water, and radium isotopes.
In contrast, area 4 is dominated by strong nitrogen-bacteria interactions, with a narrower range of
significant variables.

After bacteria underwent a BOXCOX and a logarithmic transformation, a weak negative
correlation between depth to water and bacteria was found in the groundwater (r=0.3, p-value:
0.04; r=0.3, p-value: 0.04). After Boruta analysis, the BOXCOX-transformed dataset had a
confirmed status, but the logarithmically transformed dataset yielded a rejected status. Salinity
exhibited a weak positive correlation with bacterial counts in area 3 across both transformations,
BOXCOX and logarithmic (r=0.4, p-value: 0.03; r=0.4, p-value: 0.03). After Boruta analysis for
both transformations of bacteria against salinity, the status was rejected, indicating that salinity is
not significant for predicting bacteria counts. Variability between the strength, significance, and
Boruta status of salinity and bacteria between the two areas indicates that correlations likely reflect
other environmental conditions of the area, such as fortnightly tidal variability (Boehm and
Weisberg, 2005), which impact the input, transport, and distribution of fecal indicator bacteria
(Knee et al., 2008). Despite the observed correlation, salinity itself plays a limited role in FIB
levels; instead, tidal variations, which influence both salinity and FIB transport, are the primary
factor (Boehm and Weisberg, 2005). Additionally, oxidation-reduction potential (ORP) showed a
weak negative correlation in the logarithmically transformed dataset (r=-0.3, p-value: 0.05),
however, ORP had a rejected status after Boruta analysis. A weak positive correlation with **Ra
was observed in the logarithmic dataset (r=0.3, p-value: 0.04) with a rejected status after Boruta
analysis, showing that the variable is insignificant for predicting bacteria values.

In contrast to area 3, no additional parameters (e.g., salinity, ORP, radium isotopes) showed
significant correlations with bacterial counts, suggesting that nitrogen species are the primary
drivers of bacterial variation in the groundwater in area 4. In area 4, strong negative correlations
with NH4" and DIN were observed across BOXCOX and logarithmic datasets (p-value<<0.01 for
both variables after BOXCOX and logarithmic transformations). These variables were also
confirmed as significant predictors through Boruta analysis, emphasizing their role in predicting
bacteria counts in area 4. Ammonium toxicity on FIB like E. coli, B. subtilis, and Enterococcus
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often depends on the concentration, the bacterial species present, the initial bacterial density, and
the specific environmental conditions. High ammonium concentrations can be lethal to FIB,
however, mortality is attributed to ionic or osmotic stress rather than directly to ammonium toxicity
(Muller et al., 2006). In addition, a study done in 2023 by Pereira et al. found that Enterococcus
exhibits a higher mortality rate in the presence of in-use quaternary ammonium compounds
(QACs) and lack QAC tolerance genes. QACs are commonly found in disinfectants, antiseptics,
preservatives, food production products, and consumer products (Pereira et al., 2023), which can
make their way into the environment through wastewater treatment plant discharge and leaching
sewage (Arnold et al., 2023).

After the bacteria dataset underwent a logarithmic transformation, various factors were
found to be significant across all systems, including groundwater, pore water, and surface water.
DO and ORP demonstrated a strong positive correlation with FIB (p-value<< 0.01 and p-
value<<0.01), highlighting their significance across all systems. Additionally, salinity and pH
displayed strong positive correlations across all systems (p-value<<0.01 for both variables). FIB,
like enterococci, tend to be more sensitive to acidic environments (Hubbart et al., 2022), indicating
that more neutral and alkaline environments are conducive to bacterial survival across all systems.
Radium isotopes and radon presented mixed relationships with FIB. Radon (Rn) exhibited a strong
negative correlation (p-value<< 0.01) with bacteria counts. A negative correlation between Rn and
FIB could be found in environments with high wind conditions, which cause the increased
degassing of Rn in surface water (Lefebvre et al., 2015) and an increase in wave action, resulting
in sediment suspension that can prolong FIB survival (Bradshaw et al., 2021). Radium isotopes
223Ra and ?**Ra also showed negative correlations. However, the correlation was stronger between
FIB and ?**Ra (p-value<<0.01) and weaker between FIB and ?**Ra (p-value = 0.02). These
radon/radium patterns with FIB could arise from various conditions. Dilution of bacteria by
radon/radium-rich groundwater with longer residence times (Hwang et al., 2019) could cause an
inverse relationship between FIB and radon/radium to be observed. In addition, environmental
factors favoring bacterial growth, such as increased organic matter, stagnant waters, or reduced
flow (Evanson and Ambrose, 2006), in radon/radium-poor areas could explain these patterns.
Biogeochemical factors could also play a role, such as sediment interactions reducing
radon/radium levels while promoting bacterial activity. Additionally, human or animal and surface
runoff inputs could disproportionately elevate bacteria in areas with low radon/radium influence.

Bacteria data was log-transformed and compared against groundwater chemistry data to
identify possible relationships. DO showed a strong positive correlation with FIB concentrations
(p-value<<0.01) Like DO, salinity exhibited a significant positive correlation (p-value<<0.01).
Radium isotopes ?**Ra and #**Ra showed strong positive correlations with bacteria (p-value<<0.01;
p-value<<0.01, respectively). The ***Ra/**°Ra activity ratio (e.g., AR224:226) also had a strong
positive correlation with bacteria (p-value<<0.01). This indicates that bacterial inputs are
associated with very recent nearshore inputs since 224Ra is a short-lived isotope (half-life of 3.6
days). Nitrogen species consistently exhibited negative correlations with FIB concentrations in
groundwater. TDN showed a strong negative correlation (p-value<<0.01), while NOs~ and the
NOs™ + NO: had weaker but still significant negative correlations (p-value = 0.016 and p-value =
0.011, respectively).

Few groundwater variables showed significant correlations with fecal indicator bacteria
(FIB) in the untransformed dataset. DO and salinity both showed weaker positive correlations with
fecal indicator bacteria, with DO being the stronger of the two (p-value: 0.016 and p-value: 0.05,
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respectively). Radium isotopes ???Ra and ?**Ra exhibited strong positive correlations with FIB in
groundwater (p-value: 0.004 and p-value<<0.01, respectively). Contrasting against the log-
transformed bacteria dataset, surface water DO was found to have a strong negative correlation
with bacteria in the untransformed dataset (p-value<<0.01). Like the log-transformed dataset,
surface water salinity had a strong positive correlation with bacteria (p-value<<0.01). A weak
positive correlation between ?*°Ra and bacteria (p-value: 0.03) was found. Additionally, unique to
the untransformed surface water when compared to other untransformed systems, NO>~ was found
to have a strong negative correlation with FIB (p-value: 0.009).

6.1.3. Porewater relationships

The analysis of pore water chemistry revealed several significant correlations with log-
transformed FIB data, highlighting the intricate relationships between geochemical conditions and
microbial dynamics in nearshore environments. DO exhibited a weak positive correlation with FIB
concentrations (p-value: 0.041), suggesting oxygen availability may slightly enhance bacterial
persistence or mobilization. Still, this relationship is less pronounced than other factors. This
indicates that areas with moderate flushing, where oxygenated waters are present, could still pose
a risk of microbial contamination if other environmental conditions are favorable. Salinity, on the
other hand, showed a strong positive correlation with FIB (p-value << 0.01), underscoring its
significant role in bacterial persistence. Elevated salinity levels in porewater indicate stagnant,
poorly flushed sediments, which create an environment conducive to the concentration and
survival of bacteria. Enteric bacteria have shown increased survival in sediments, as particulates
provide microhabitats that offer unique protection, nutrients, and more moisture (Gerba and
McLeod, 1976; Pommepuy et al., 1992; Davies et al., 1995; Howell et al., 1996; Desmarais et al.,
2002). Additionally, suitable microhabitats for Enterococcus and other fecal bacteria can be
provided by biofilm formation (Piggot et al., 2012). Microbes and bacteria are protected by
physical and biological challenges and stressors along shorelines such as fluctuations in
temperature, desiccation, ion concentration, predation, ultraviolet radiation, and wave action by
extracellular polymeric substances (EPS), which allow for microbes to adhere to surfaces and each
other (Piggot et al., 2012). Such conditions are likely exacerbated by tidal forcing or saltwater
intrusion, particularly in areas where septic system backflow or sewage line failures introduce
additional nutrient loads, further enhancing bacterial persistence.

Radium isotopes, ***Ra and ***Ra, demonstrated strong positive correlations with FIB, with
p-values of 0.007 and 0.004, respectively. These correlations suggest that radium activities, often
associated with SGD and sediment-water interactions, are reliable indicators of bacterial transport
and contamination pathways. Elevated radium activities likely reflect zones, where contaminated
groundwater or sediment-water exchanges, facilitate the mobilization of FIB from sediments into
nearshore environments, particularly in areas affected by failing infrastructure. Contrary to the
trends observed in groundwater, the activity ratio of **Ra/**’Ra (AR224:226) displayed a weaker
positive correlation with FIB concentrations (p-value: 0.027) with the log-transformed data.
However, when using the untransformed dataset for pore water. The AR224:226 correlated
significantly with FIB (p-value: 0.0084) in pore water and was the only significant correlated
variable. Specific hydrodynamic or geochemical processes govern the relative contributions of
short-lived and long-lived radium isotopes. Higher AR224:226 values likely reflect recent SGD or
sediment-water exchange events where 2**Ra is readily desorbed from sediments due to its short-
lived nature and dynamic hydrodynamic conditions (Gonneea et al., 2008). These events can act
as conduits for FIB transport, as SGD and sediment disturbance mobilize bacteria and other
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contaminants from sediments into the overlying water column. In contrast, areas dominated by
longer residence times or limited exchange processes may exhibit lower AR224:226 ratios and
reduced FIB mobilization.

Thus, the correlation between AR224:226 and FIB concentrations underscores the
interplay between radium mobility, sediment-water interactions, and microbial contamination.
Monitoring these isotopic ratios can provide valuable insights into recent SGD dynamics and
associated bacterial transport pathways, particularly in nearshore environments with complex
hydrological and geochemical conditions.

6.1.4. Combined groundwater, porewater, and surface water relationships

When considering the data from all three environments, including groundwater, surface
water, and porewater, nitrogen species showed significant negative correlations with FIB
concentrations. TDN had a significantly strong negative correlation (p<<0.01), as did DON (p-
value = 0.006). DIN and its components, NOs~, NO2", and the combined measure of nitrate and
nitrite, all showed strong negative correlations with FIB concentrations (p-value<<0.01 for listed
variables). NH4" also exhibited a strong negative correlation (p<<0.01).

In the untransformed dataset, FIB showed relationships with several variables across all
systems (groundwater, porewater, and surface water). Like in the logarithmically transformed
bacteria dataset, bacteria showed a strong positive correlation with DO (p-value<<0.01). Strong
positive correlations were also observed between bacteria and salinity, pH, and ORP (p-
value<<0.01 for listed variables). Radon and radium isotopes (***Ra and ***Ra) showed negative
correlations with bacteria at varying strengths. Radon had a strong negative correlation with FIB
(p-value<<0.01). °Ra exhibited a weaker negative correlation with bacteria (p-value: 0.02), while
224Ra had a strong negative correlation with bacteria (p-value<<0.01). The activity ration of ?**Ra
to °Ra (AR224:223) had a weak negative correlation with FIB (p-value: 0.04). All nitrogen
species showed negative correlations with fecal indicator bacteria (FIB), indicating that these
species may play a role in inhibiting bacterial growth. Total dissolved nitrogen (TDN) had a strong
negative correlation with bacteria (p-value<<0.01). Dissolved organic nitrogen (DON) and its
species, nitrate (NOs"), nitrite + NO:", and the combined measurement of the two (NOs~ + NO2")
exhibited significant negative correlations with FIB (p-value<<0.01 for DON and its components).
Dissolved inorganic nitrogen (DIN) and ammonium (NH4") had strong negative correlations with
bacteria across all systems (p-value<<0.01 and p-value<<0.01).

6.2. Analysis of Chemical Data Using Deep Learning and Principal Component
Analyses

The results of the Variational Autoencoder (VAE) for surface sample chemicals, focusing
on the two highest latent dimensions, are shown in Figure 6.4. Latent Dimension 1 accounts for
21.21% of the total variance, Latent Dimension 2 accounts for 32.60%, Latent Dimension 3
accounts for 25.39%, and Latent Dimension 4 accounts for 20.80%.
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The red arrows in the plot indicate statistically significant chemical variables with a p-
value of less than 0.05, demonstrating a significant correlation with the bacteria dataset. These
arrows were highlighted to emphasize the chemicals that have a notable relationship with bacteria
levels. Additionally, when arrows are aligned in the same direction, it suggests a positive
correlation between those chemicals, while arrows in opposite directions indicate a negative
correlation.

The results of the Variational Autoencoder (VAE) for surface sample chemicals, focusing
on the two highest latent dimensions with log-transformed bacteria is shown in Figure 6.5. Latent
Dimension 1 accounts for 26.85% of the total variance, Latent Dimension 2 accounts for 7.17%,
Latent Dimension 3 accounts for 28.18%, and Latent Dimension 4 accounts for 37.81%. The
remaining figures display the chemical datasets across different systems, including groundwater
and pore water, with both the original and log-transformed Bacteria datasets. These visualizations
provide a comprehensive view of the relationships and correlations between the chemical variables
and the Bacteria dataset in various water systems. Figure 6.6, Figure 6.7, Figure 6.8, and Figure
6.9 illustrate the results of the Variational Autoencoder (VAE) for pore sample chemicals with
original bacteria, pore sample chemicals with log-transformed bacteria, ground sample chemicals
with original bacteria, and ground sample chemicals with log-transformed bacteria, respectively.
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Figure 6.4. Results of the Variational Autoencoder (VAE) for surface sample chemicals with
the original Bacteria dataset. (a) The relationship between Latent Dimension 2 (32.60%) and
Latent Dimension 3 (25.39%), with red arrows highlighting variables with a p-value less than
0.05. (b) Contribution of each variable to the respective latent dimensions.
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Figure 6.5. Results of the Variational Autoencoder (VAE) for surface sample chemicals with
log-transformed Bacteria dataset, focusing on the highest latent dimensions. (a) The
relationship between Latent Dimension 3 (28.18%) and Latent Dimension 4 (37.81%,), with
red arrows highlighting variables with a p-value less than 0.05. (b) Contribution of each

variable to the respective latent dimensions.
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Figure 6.6. Results of the Variational Autoencoder (VAE) for pore sample chemicals with the
original Bacteria dataset, focusing on the highest latent dimensions. (a) The relationship
between Latent Dimension 1 (35.41%) and Latent Dimension 3 (42.18%), with red arrows
highlighting variables with a p-value less than 0.05. (b) Contribution of each variable to the

respective latent dimensions.
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transformed Bacteria dataset, focusing on the highest latent dimensions. (a) The relationship
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highlighting variables with a p-value less than 0.05. (b) Contribution of each variable to the

respective latent dimensions.
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Figure 6.8. Results of the Variational Autoencoder (VAE) for ground sample chemicals with the
original Bacteria dataset, focusing on the highest latent dimensions. Results of the Variational
Autoencoder (VAE) for ground sample chemicals with the original Bacteria dataset, focusing on
the highest latent dimensions. (a) The relationship between Latent Dimension 3 (20.64%) and
Latent Dimension 4 (73.59%), with red arrows highlighting variables with a p-value less than
0.05. (b) Contribution of each variable to the respective latent dimensions.
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Figure 6.9. Results of the Variational Autoencoder (VAE) for ground sample chemicals with log-
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highlighting variables with a p-value less than 0.05. (b) Contribution of each variable to the
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6.3. Relationships Between Bacteria Levels, Groundwater Elevation, and
Environmental Factors using Machine Learning Techniques

6.3.1. Analysis of environmental and hydrological datasets, preprocessing of data, and
variables selection for machine learning models

The study area spans three counties: Matagorda, Brazoria, and Galveston. It was divided
into distinct regions based on different watersheds, with the dataset extracted using GIS for each
specific area. The tables below present the datasets utilized for each region. This approach
categorizes the study area into four locations according to watershed type. This analysis
investigates the relationship between environmental factors and bacteria across various areas,
including surface, pore, and groundwater samples. It examines how key environmental variables,
such as tide level, groundwater elevation, streamflow, and precipitation, correlate with bacterial
levels in each water system. The aim is to understand the influence of environmental and
hydrological factors on bacterial distribution and behavior across different areas, ultimately
identifying the most significant factors for optimizing the machine learning model. For instance,
Figure 6.10 Figure 6.10. Analysis of Environmental Factors and Bacteria in Area 4 in different
months: (a) 2021-12; (b) 2022-02; (c) 2022-03; (d) 2022-06; (e) 2022-08; (f) 2022-10; (g) 2022-
11; (h) 2022-12; (i) 2023-01; (j) 2023-02; (k) 2023-04.illustrates the variation in tide level,
precipitation, groundwater elevation, streamflow, and bacteria levels during December 2021 for
Galveston County (Area 4). Bacteria levels exhibit notable fluctuations, with significant increases
observed during certain peaks. These spikes are frequently associated with rainfall events
(indicated by blue bars), as well as changes in tide levels and groundwater elevation.
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Tide Level, Precipitation, Groundwater Elevations, Stream Water Level, and Bacteria Levels - 2023-04
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Figure 6.10. Analysis of Environmental Factors and Bacteria in Area 4 in different months: (a)
2021-12; (b) 2022-02; (c) 2022-03; (d) 2022-06; (e) 2022-08; (f) 2022-10; (g) 2022-11, (h) 2022-
12; (i) 2023-01; (j) 2023-02; (k) 2023-04.

The figures presented below (Figure 6.11 and Figure 6.12) illustrate the statistical
significance of various transformed environmental factors in relation to bacteria levels in the
dataset. These visualizations highlight which factors have a significant impact on bacteria
concentrations, helping to identify key drivers of bacterial increases in different areas and
systems. By analyzing the relationships between these transformed factors and bacteria levels,
we can gain valuable insights into the underlying environmental conditions contributing to
bacterial growth and contamination in areas 1 and 2. This information is crucial for

understanding the dynamics of bacteria proliferation and for informing strategies aimed at
mitigating contamination.
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Normalized Bacteria and Significant Features (p-value < 0.06)

10
08
=1
2
e
= 06
i
@
=
E
o
3
XN 04
]
£
=]
z
02
0.0
—— Bacteria ‘Wind Gust 8773767 (kn)
—— Verified_ft_8773146_lag_-1 Mata_KBYY_data_PRECIP_Cumulative_Rain Air Temp_8773767 (F)
~-- Braz SRDT2 data PRECIP - -- Mata_MGCT2_data_PRECIP_Cumulative_Rain_3_ ~=- Wind Speed_8773701 (kn)
Mata_KBYY data PRECIP —-- Mata_BACT2_data_PRECIP_Cumulative_Rain_2_Days Wind Gust_ 8773701 (kn)
----- Mata_SECT2_data_PRECIP Mata_KPSX_data PRECIP Cumulative | o Al Temp_B773701 (F)
~—— Mata_MGCT2_data_PRECIP ~— Mata_KPSX data PRECIP_Cumulative R = Wind Speed 8773146 (kn)
==~ Mata_BACT2_data_PRECIP === Wind Speed_8773767 (kn) ==~ Wind Gust_8773146 (kn)
Mata_KPSX_data PRECIP = Wind Dir_8773767 (deg) == Air Temp_8773146 (F)
Normalized Bacteria and Significant Features (p-value < 0.06) log Bacteria
10
08
=
S
S o6
.,.
o
]
g
5
&
= 04
E
=]
z
02
00
0 10 2 E) 40 ) )
E
— Bacteria ~ Wind Speed_8773767 (kn) Wind Gust_8773701 (kn)
—— Mata_KBYY_data_PRECIP === Wind Gust_8773767 (kn) === Air Temp_8773701 (F)
==~ Mata_KPSX_data_PRECIP Air Temp_8773767 (F) == Wind Speed_8773146 (kn)

- Mata_MGCT2_data_PRECIP_Cumulative_Rain_3_Days Wind Speed_8773701 (kn) Wind Gust 8773146 (kn)
* Mata_KPSX_data_PRECIP_Cumulative_Rain_3_Days

Figure 6.11. Area 1: Normalized Bacteria in surface water and significant environmental
factors: (a) original bacteria data; (b) log-transformed bacteria data.
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Normalized Bacteria and Significant Features (p-value < 0.06)
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Figure 6.12. Area 2: Normalized Bacteria in surface water and significant environmental
factors: (a) original bacteria data; (b) log-transformed bacteria data.

6.3.2. Surface water bacteria level predictions using machine learning techniques

A machine learning model was developed for modeling surface bacteria levels using
environmental factors, including streamflow, tide level, three sources of precipitation, wind
direction, sea level pressure, soil moisture, terrestrial water storage, wind speed, water
temperature, air temperature, surface runoff, root-soil moisture, and sampled data for groundwater
elevation. To ensure data readiness, a thorough cleaning and preprocessing step was conducted,
focusing on removing inconsistencies, addressing missing data, and preparing the dataset for
robust analysis. Additionally, data was normalized to ensure that all features were on a similar
scale. Normalization was particularly important to prevent dominance by features with larger
numerical ranges, improving model stability, convergence speed, and overall performance.

One of the key preprocessing steps involved the handling of missing data to ensure the
dataset's integrity and suitability for analysis. Next, we focused on feature selection to identify the
most relevant variables influencing surface bacteria levels. Additionally, feature selection was
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employed to identify the most relevant variables influencing surface Bacteria levels, such as
precipitation, tides, and other environmental factors. This targeted approach enhanced the model’s
efficiency by reducing dimensionality, mitigating overfitting risks, and focusing computational
resources on impactful predictors. Data augmentation was implemented to address this limitation
because the bacteria dataset was insufficient to develop a robust model due to its lack of continuous
temporal coverage. Synthetic samples were generated using Gaussian noise to augment the dataset
and improve model generalization, allowing the model to learn from a more diverse dataset and
reducing overfitting risks.

A combined dataset (X combined) was created by appending the labels column to the
augmented data. The data was then split into training and testing sets. The training set included
both original and synthetic data to enhance the model’s exposure to variability, while the testing
set was restricted to original data only to maintain unbiased evaluation metrics. To evaluate the
model’s performance exclusively on the original data, the testing set was filtered to include only
the original samples and their corresponding labels to ensure that synthetic data did not interfere
with the testing phase, preserving the integrity of the results. Finally, XGBoost model was
developed by selecting the most influential features, leading to better generalization when applied
to unseen data. Hyperparameter tuning was done to identify the optimal settings that minimize
prediction error and improve model robustness.

As shown in Figure 6.13, for area 3, the model achieved an RMSE of 0.4340, an R? value
0f 0.90, and an MAE of 0.122. In comparison, area 4 demonstrated an even stronger performance
with an RMSE of 0.242, an R? value of 0.96, and an MAE of 0.110. These results highlight the
model's robustness and strong predictive capability across different areas.
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Figure 6.13. Scatter plot of the model's predictions for both areas using transformed log
bacteria data.

As shown in Figure 6.14a, the most influential factors contributing to surface bacteria
contamination in area 3 include streamflow (station: 8117210), 15-day precipitation accumulation
(station: DNCT?2), groundwater elevation in well 10, wind direction (EW) at station 8771972, tide
level (station: 8771486) with a 5-day lag, and tide level at station 8771013 with a -3-day lag,
among others. The combination of these hydrological and meteorological variables reflects a
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strong interplay between surface water inputs and groundwater fluctuations, driving bacteria levels
in this area. In contrast, for area 4, as illustrated in Figure 6.14b, the primary factors are tide level
(station: 8771013) with lags of -3, -10, and 3 days, 7-day precipitation accumulation (station:
BZRT?2), streamflow (station: 08117301), groundwater elevation in well 2 with lags of -4 and 1
days, average sea level pressure, and salinity. The dominance of tide-related features highlights the
significant influence of coastal processes on bacteria dynamics in Area 4, while interactions with
groundwater and precipitation provide additional pathways for contamination.
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Top 30 Feature Importances for Bacteria Area 3
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Figure 6.14. Feature importance for (a) Area 3 and (b) Area 4, illustrating the top
30 most consistent important features based on the weight metric for predicting
surface bacteria levels using environmental and hydrological factors.

Each subplot represents a specific area, with features ordered by their contribution to
reduce the model's error. The bars indicate the relative importance of each feature, with the values
on the bars representing their importance scores.
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7. OVERALL CONCLUSION

This study highlights the essential need for interdisciplinary and thorough measurements
in addressing the complex hydrological, ecological, and infrastructural challenges facing the
Texas Gulf Coast. By combining various methods such as groundwater monitoring, sediment
analysis, microbial source tracking (MST), groundwater tracers, and predictive modeling, we
gain a deeper insight into the factors influencing water table fluctuations, the transport of
nutrients and microbes, and their effects on both human health and the environment. Our results
indicate a significant connection between upstream hydrological systems and the groundwater
dynamics of barrier islands. This connection underscores the importance of coordinated
management approaches across the region to effectively tackle issues related to flooding,
contamination, and ecological degradation.

The research found that groundwater recharge from upstream streamflow, alongside local
rainfall and tidal effects, notably elevates water tables in the barrier islands from late winter to
early spring. This elevation increases the risk of flooding, especially in areas with permeable
sediments and shallow water tables, which can lead to septic system failures, sewage backflow,
and the transport of fecal indicator bacteria and nutrients into nearshore waters. Such incidents
pose immediate health risks to beachgoers due to bacterial contamination and can result in long-
term ecological challenges like nutrient enrichment, eutrophication, and harmful algal blooms.
Furthermore, our use of radium isotopes as tracers revealed critical areas of nutrient-rich
groundwater discharge, further illustrating the interconnected nature of coastal water quality,
regional hydrology, and the resilience of infrastructure.

The predictive modeling aspect of our research identified key factors influencing water
table fluctuations, including streamflow, soil moisture, rainfall, and terrestrial water storage.
These models have demonstrated strong effectiveness in predicting groundwater behavior,
equipping coastal managers with the tools to foresee high-risk periods and implement proactive
measures to minimize flooding and contamination risks. The findings stress the importance of
predictive tools in enhancing decision-making processes, especially for issuing advisories to
safeguard recreational users, strengthening infrastructure resilience, and protecting coastal
ecosystems.

Recommendations
1. Hydrological Monitoring and Early Warning Systems:

o Establish long-term, regionally integrated monitoring programs that focus on
groundwater levels, upstream streamflow, precipitation, and tidal influences. These data
should be used to refine predictive models for better forecasting of water table
fluctuations and flood risks.

o Implement real-time early warning systems for beach advisories, using bacterial
contamination thresholds and predictive indicators such as water table levels, rainfall, and
streamflow dynamics.

2. Infrastructure Improvements:
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o Upgrade and maintain septic systems and sewage infrastructure in vulnerable areas,
particularly in zones prone to shallow water tables and tidal influences. Consider the
adoption of more resilient, watertight designs that minimize infiltration and backflow
during high water table periods.

o Develop policies and funding mechanisms to retrofit or replace failing septic systems,
especially in coastal communities with older infrastructure.

3. Nutrient and Contaminant Mitigation:

o Introduce land-use policies that regulate nutrient and contaminant runoff, particularly
upstream, to reduce inputs into regional hydrological systems. Encourage sustainable
agricultural practices and reduce impervious surfaces to improve groundwater recharge
and minimize nutrient loading.

o Promote the use of green infrastructure, such as vegetated bufters and constructed
wetlands, to filter contaminants and nutrients before they enter groundwater or surface
water systems.

4. Public Health and Recreational Safety:

o Establish standardized protocols for monitoring and reporting fecal indicator bacteria
levels in recreational waters. This includes integrating microbial source tracking into
routine assessments to identify contamination sources and inform targeted interventions.

o Conduct public education campaigns on the risks of bacterial contamination and the
importance of compliance with advisories to protect health during high-risk periods.

5. Coastal Ecosystem Resilience:

o Prioritize the protection and restoration of coastal ecosystems, which play a key role in
mitigating the impacts of nutrient loading and supporting biodiversity. Efforts should
focus on preserving natural buffers such as wetlands and dunes to improve coastal
resilience against flooding and contamination.

o Develop conservation strategies for areas identified as hotspots of submarine
groundwater discharge to balance ecological health with groundwater management needs.

6. Integrated Management Strategies:

o Foster collaboration between upstream water resource managers and coastal stakeholders
to develop cohesive management plans that address the interconnectedness of regional
hydrological and coastal systems.

o Incorporate climate variability projections into planning efforts to account for potential
shifts in precipitation patterns, sea-level rise, and increasing storm intensity, ensuring
long-term sustainability and resilience of coastal resources.

This research highlights the complexity and interconnectivity of coastal groundwater
systems and underscores the need for an integrated, science-driven approach to managing these
dynamic environments. By addressing the hydrological, ecological, and infrastructural
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challenges collectively, coastal managers can enhance resilience and sustainability, protecting
both human and environmental health in the face of evolving climate and development pressures.
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8. TASK 4: EDUCATION AND OUTREACH

TAMUCC has successfully trained graduate and undergraduate students to collect,
organize, analyze, and interpret data. This project has effectively integrated research findings and
supportive materials into the curricula and developed hands-on educational activities primarily
targeting undergraduate and graduate students. TAMUCC has incorporated data visualization
techniques, such as concentration maps and groundwater fluxes, into classroom education and
made these visualizations available to the research community through exhibits at national
meetings and workshops. Principal investigators and their graduate students have participated in
and presented results at local and regional conferences.

8.1. List of all Communications

None to report.

8.2. List of Student Training Opportunities

TAMUCC Undergraduate/Graduate Education: Dr. Roya Narimani trained both
graduate and undergraduate students in data analysis and machine learning techniques from the
ground up, preparing them to handle big data effectively. She has served as a co-instructor for the

Big Data Blitz course during the summer semester, providing an intensive overview of big data
analysis, and as an instructor for the Environmental Forecasting course in the fall semester,
where students apply machine learning to real-world environmental forecasting challenges. Cody
Lopez, Laura Button, Mahima Yogesh, Remi Labeille, Amanda Burton, Ifeanyi Anyanwu,
Quincy Walker, Allyson Girard, Justin Elliott, Rostam Mirzadi, Meehan Skylar, and Lillian
Pedraza are part of this group who participated in these classes.

Cody Lopez has trained students Joy Brown, Brittney Ortega, Cindy Vaquero, Victoria
Rivera, Sarah Martinez, Karol Ramirez-Prado, Mikaiel Khan, Annelyz Garza, Allie Watson,
Laura Button, McKenna Reinsch, Sean Majors, Ahmed Eid, Meehan Skylar, Jesicca Palitza, and
Ifeanyi Anyanwu on field work, sample collection and processing as well as measurements of
nutrients, anions, radon and radium.

Erin Taylor trained undergraduate students, Kristen Lincoln, Paulina Caro, and Sofia
Miatello, in general water quality and sample processing techniques.

Dr. Audrey Douglas has trained students on processing, measurement and analysis
radium and radon, data entry, and other standard operating procedures.

UTSA Undergraduate Education: The project was introduced to the undergraduate
students enrolled in CE 2633 Environmental Engineering. A presentation was developed covering

the basics of fecal source tracking, study sites and methods, and the importance of the study for
Texas Coastal areas and delivered as part of regular lecture in the Water and Wastewater Module.
The class was enthusiastic about the project and several students approached Dr. Kapoor
afterwards to learn more about the project and seek opportunities to be involved in such studies.
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UTSA Graduate Education: The project was introduced to the students enrolled in the

course CE 5683 Biological Phenomenon in Environmental Engineering. A presentation covering
the basics of fecal source tracking, study sites and methods, and the study's importance for Texas
Coastal areas was developed and delivered as part of a regular lecture in the Microbial Water
Quality section. The class was enthusiastic about the project, and several students approached Dr.
Kapoor afterwards to learn more about it and seek opportunities to be involved in such studies.

TAMUCC Students trained:

Graduate students — Laura Button, McKenna Reinsch, Sean Majors, Ahmed Eid, Ifeanyi

Anyanwu, Meehan Skylar, Erin Taylor, Cody Lopez

Undergraduate students — Joy Brown, Brittney Ortega, Cindy Vaquero, Victoria Rivera,

Sarah Martinez, Karol Ramirez-Prado, Mikaiel Khan, Annelyz Garza, Allie Watson, Kristen
Lincoln, Paulina Caro, Sofia Miatello

UTSA Students trained:

Graduate students — Dipti Anik Dhar, Carlos Romero Vazquez, Arash Jafarzadeh
Undergraduate students — Camila Sandoval, Alexandria Bowdoin, Jazmin Carothers
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