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1. EXECUTIVE SUMMARY 

This study underscores the essential role of an interdisciplinary approach in tackling the 

hydrological and ecological challenges facing the Texas Gulf Coast—insights that have direct 

implications for coastal management. By integrating groundwater monitoring, sediment analysis, 

microbial source tracking (MST), radium isotope analysis, and predictive modeling, we are able 

to illuminate the complex interactions between regional hydrological systems and localized 

coastal dynamics. A significant conclusion from our research is the impact of upstream 

streamflow on groundwater recharge. This establishes a vital link between mainland watersheds 

and the water tables of barrier islands. Seasonal peaks, particularly during winter and spring, lead 

to increased water table levels, heightening the risk of flooding on these islands and affecting 

both human populations and natural ecosystems. This interconnection highlights the urgent need 

for coordinated management strategies that consider upstream water flow and its broader effects 

on coastal systems. 

Flooding of the water table on barrier islands is most pronounced in late winter and early 

spring, times when both rainfall and upstream contributions are at their highest. In sandy, 

permeable areas, these shallow water tables significantly increase the potential for flooding, 

resulting in contamination risks from failing septic systems and sewage backflow. During such 

events, fecal indicator bacteria, which can originate from both human and canine sources, may 

be transported into nearshore waters, creating serious public health risks and compromising 

recreational safety. Coastal managers face the challenge of monitoring these conditions, as 

elevated levels of bacteria necessitate public advisories to protect beachgoers. Moreover, nutrient 

inflows from failing septic systems contribute to eutrophication, potentially leading to harmful 

algal blooms and the degradation of coastal ecosystems. Our findings emphasize the critical need 

for robust monitoring frameworks that can effectively capture the dynamic nature of water table 

fluctuations and associated microbial contamination. 

In addition, this study sheds light on the transport and ecological effects of nutrients like 

nitrogen and phosphorus, which are often associated with sewage and septic system failures 

during periods of water table flooding. Elevated nutrient concentrations can destabilize marine 

habitats, fueling algal blooms, depleting oxygen levels, and disrupting aquatic food webs. 

Coastal areas with consistently shallow water tables are particularly susceptible, acting as 

conduits for the transport of nutrients and contaminants. Our use of radium isotopes as tracers for 

submarine groundwater discharge (SGD) has identified hotspots of nutrient-rich groundwater 

discharge, coinciding with times of high water table levels and flooding. These processes further 

highlight the interconnectedness of coastal water quality with regional hydrology and 

infrastructure resilience. For coastal managers, understanding these patterns is vital to designing 

effective interventions that safeguard both recreational and ecological resources. 

Ultimately, this research outlines tangible pathways for coastal managers to minimize 

these risks and bolster resilience. The predictive modeling tools developed during this study offer 

valuable insights for forecasting water table behavior and identifying high-risk periods for 

flooding and microbial contamination. Such tools facilitate the implementation of early warning 

systems, enabling managers to issue timely advisories and proactive strategies. Additionally, our 

findings advocate for improvements in septic systems and sewage infrastructure in vulnerable 
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regions, coupled with targeted land-use policies aimed at reducing nutrient and contaminant 

inputs. By integrating upstream hydrological management with localized coastal interventions, 

this study promotes a holistic approach to addressing the intertwined challenges of public health 

and ecological degradation, ensuring sustainable management of Gulf Coast resources amid 

ongoing climate and development pressures. 
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2. STUDY AREA 

This study focuses on the dynamic barrier island systems and adjacent coastal 

environments of Galveston, Matagorda, and Brazoria Counties along the Texas Gulf Coast 

(Figure 2.1). These regions, shaped by dynamic geological processes, support diverse 

ecosystems and play a critical role in protecting inland areas from storm surges while serving as 

hubs for tourism, recreation, and fishing industries. The Texas Gulf Coast, with its 3,359 miles of 

shoreline, features extensive barrier islands, bays, tidal rivers, and creeks that have been heavily 

influenced by natural and anthropogenic factors over time (NOAA, 2020). Barrier islands, which 

constitute about 10% of Earth’s continental shorelines, are significant landforms along the Texas 

coast. The Texas barrier islands form a chain of long, sandy islands that separate the coastal bays 

from the Gulf of Mexico, protecting these bays from severe waves and currents. Galveston 

Island, 43 kilometers long, is associated with the Trinity-San Jacinto Estuary, while Follet’s 

Island, 21 kilometers long, is associated with the Christmas Bay Estuary. Sargent Beach and 

Matagorda Beach, located on the Matagorda Peninsula, shield Matagorda and East Matagorda 

Bays. The Galveston Coast Guard Station monitors weather conditions, reporting that the wet 

season is from June to September (highest rainfall in September: 124.5 mm), and the dry season 

is from October to May (driest month: March, 81.3 mm). These islands, comprised primarily of 

fine sands, are prone to flooding, with land use dominated by industry or recreational housing 

(Figure 2.2Error! Reference source not found.). The lithology of Galveston, Matagorda, and 

Brazoria Counties highlights the interplay between high-energy barrier island environments and 

low-energy estuarine, lagoonal, and marsh systems. Barrier islands are predominantly composed 

of fine- to medium-grained sands deposited and shaped by wave and tidal forces. Meanwhile, 

back-barrier areas comprise organic-rich silty clays formed in tidal wetlands, transitioning inland 

to coarser clay, sand, and gravel deposits in older terraces and river systems. Galveston County 

includes Galveston Island and the Bolivar Peninsula, dominated by Holocene barrier island 

deposits of well-sorted, fine- to medium-grained sands formed by wave and tidal processes. 

Behind the barrier islands lie back-barrier environments with lagoonal and marsh deposits 

composed of silty clays rich in organic content, reflecting low-energy tidal settings. Galveston 

Bay, the largest estuary in Texas, plays a vital ecological role but faces challenges such as 

urbanization and industrial pollution, particularly in areas like the Houston Ship Channel and 

Clear Lake (Ward and Armstrong, 1992). 

Matagorda County features the Matagorda Peninsula, a prominent barrier island system 

protecting the expansive Matagorda Bay estuary from Gulf storm activity. The peninsula’s 

sediments are dominated by fine sands deposited by high-energy waves and wind. At the same 

time, the adjacent bay contains mud, fine sand, and shell fragments characteristic of low-energy 

estuarine environments. Freshwater inflows from the Tres Palacios Creek watershed are critical 

to Matagorda Bay’s ecological balance but have been identified as a source of E. coli 

contamination from septic systems, agricultural runoff, and wildlife waste (TCEQ, 2018). 

Brazoria County’s coastal environment is heavily influenced by the Brazos River, which has 

deposited sand, silt, and clay in its floodplain and deltaic systems. Coastal areas feature 

prominent sand layers, while marshes and low-lying plains contain finer clay and mud deposits 

typical of low-energy environments. However, these regions face challenges such as moderate 

salinity levels and periodic flooding, impacting both ecosystems and land management practices 

(Texas Geological Survey, 2022). 

Hydrologically, the region interacts with significant groundwater systems, including the 
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Chicot and Evangeline aquifers. The Chicot Aquifer, composed of unconsolidated sands and silts 

with interbedded clay layers, reflects fluvial and deltaic processes. At the same time, the deeper 

Evangeline Aquifer transitions to marine-origin finer-grained deposits, indicative of historical 

sea-level changes. These aquifers are vital resources for the coastal plain but face challenges 

from salinity intrusion, over-extraction, and surface contamination (Texas Geological Survey, 

2022). Water quality concerns arise from natural processes and human activities, such as nutrient 

loading, bacterial contamination, and urban runoff. For example, in Galveston Bay, urban and 

industrial activities have increased nutrient and bacterial pollution, impacting marine habitats and 

public health. In Matagorda Bay, agricultural runoff and waste discharges alter nutrient and 

contaminant concentrations. In Brazoria County, bacterial contamination is associated with septic 

system failures, industrial activities, and urbanization (Powers et al., 2021). 

This research addresses these critical water quality and hydrological challenges through 

field monitoring, modeling studies, and machine-learning approaches. Objectives include 

determining chemical concentrations in groundwater and surface water, identifying drivers of 

bacterial and nutrient contamination, and assessing nutrient and bacterial transport between the 

Gulf of Mexico and surrounding watersheds. The research will also evaluate groundwater 

dynamics, which play a significant role in exacerbating contamination linked to failing septic 

systems. 

 

Figure 2.1. Map of the study area showing the locations of monitoring wells, surface water, and 

porewater sampling locations. 
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Figure 2.2. Land use map of sampling area along Texas barrier islands using the Esri 2020 

Land Cover dataset. Sample sites are shown in black.  
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3. TASK 1:  GROUNDWATER-SEAWATER INTERACTION ASSESSMENT 

Prepared by Roya Narimani, Ph.D., Dorina Murgulet, Ph.D., Cody Lopez, and Joy Brown 

3.1. Executive Summary 

This study examines groundwater dynamics across coastal areas of the Texas barrier 

islands, focusing on four distinct regions between Quintana Park and the Heritage Preserve. Key 

findings highlight the spatial and seasonal variability in hydrology, influenced by sediment 

composition, recharge events, and tidal forcing. Coastal areas exhibit permeable sediments that 

facilitate rapid groundwater flow and discharge, while inland areas have finer sediments that 

reduce permeability. Seasonal depth-to-water (DTW) trends reveal higher flooding risks during 

late winter and early spring in coastal areas, with DTW approaching or exceeding the ground 

surface, particularly in regions closer to the Gulf of Mexico. Inland regions consistently show 

deeper DTW values, reducing their vulnerability to flooding. Submarine groundwater discharge 

(SGD) rates are significantly higher in coastal regions during cooler months due to rainfall-

driven recharge and aquifer flushing, while warmer months see seawater intrusion and reduced 

SGD rates. Predictive modeling, achieving high accuracy (R² > 0.93), identifies streamflow, 

rainfall, and soil moisture as key drivers of groundwater fluctuations. These insights emphasize 

the interconnected dynamics of groundwater behavior, SGD, and infrastructure vulnerability, 

providing a foundation for adaptive coastal resource management strategies, flood risk 

mitigation, and sustainable water resource planning. 

3.2. Background 

Groundwater is critical in coastal ecosystems as a pathway for nutrient and contaminant 

transport via submarine groundwater discharge (SGD). SGD contributes significantly to coastal 

nutrient loading, delivering solutes such as nitrate, ammonium, and dissolved organic carbon, 

which can exacerbate eutrophication and algal blooms (Knee et al., 2011; Bianchi et al., 2014). 

This process, often driven by anthropogenic activities, introduces pollutants from urban 

development, agriculture, and septic systems, affecting the ecological and economic stability of 

coastal regions (Burnett et al., 2003; Bianchi et al., 2014). Radon-222 and radium isotopes are 

essential natural tracers for detecting and quantifying groundwater contributions to coastal 

contamination. Radon-222, with its short half-life, is a reliable indicator of recent SGD, marking 

areas of active discharge (Burnett et al., 2003; Knee et al., 2011). Radium isotopes, on the other 

hand, provide a longer-term perspective on interactions between fresh and saline water, mapping 

the pathways of contaminants from land-based sources to coastal waters (Burnett et al., 2003; 

Moore, 1996). In Texas coastal bays, seasonal and spatial variations in SGD rates have been 

linked to changes in nutrient concentrations, particularly ammonium and nitrate, which are key 

indicators of septic system leachate and agricultural runoff (Murgulet et al., 2016). 

In environments where surface water inputs are not a substantial part of the water budget 

to coastal waters, SGD emerges as a primary nutrient source, particularly through the release of 

nutrients like nitrate and ammonium, which are often linked to septic system leachate, 

agricultural runoff, and decaying organic matter (Hu et al., 2006; Kroeger and Casey, 2007). The 

biogeochemical processing within subterranean estuaries (STEs) further modifies these solutes, 

resulting in SGD with unique chemical signatures and significant ammonium fluxes under 

anoxic conditions (Charette and Sholkovitz, 2006; Roy et al., 2010). Such nutrient-rich 

discharges can stimulate algal productivity or contribute to harmful algal blooms (HABs) in 

coastal ecosystems (Kroeger et al., 2007; Santos et al., 2012). SGD is also a significant source of 
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bacterial pathogens such as E. coli, which pose risks to public health and marine ecosystems 

(EPA, 2020; Smith et al., 2020). Stable isotopes of nitrogen and oxygen in nitrate further 

elucidate the transformations and origins of nutrients, helping to trace contamination pathways 

and identify pollution sources (Xue et al., 2009). This integration of groundwater tracers with 

bacterial and nutrient source tracking provides a detailed understanding of how SGD contributes 

to nutrient and pathogen loading in coastal environments. 

This research underscores the importance of integrating radium and radon tracers with 

bacteriological data to analyze groundwater-surface water interactions. By investigating SGD's 

role in transporting nutrients and contaminants such as E. coli to Texas Gulf Coast estuaries, this 

study provides critical insights into the management of water quality in vulnerable coastal 

regions. These findings directly affect public health, ecosystem functions, and sustainable 

watershed management (Smith et al., 2020; Texas Water Resources Institute, 2017). By 

identifying and addressing the sources of bacterial and nutrient pollution, this research supports 

the development of remediation strategies that enhance water quality, protect biodiversity, and 

promote resilience within coastal communities (Jones et al., 2019; TCEQ, 2018). 

3.3. Methods 

3.3.1. Hydroparameter and water sample collection 

Groundwater, porewater, and surface water samples were collected monthly, starting with 

November 2021 to May 2023. Field parameters, which were collected before sampling, 

including salinity, dissolved oxygen (DO), pH, and specific conductivity, were measured using a 

multi-probe YSI ProDSS. Groundwater was sampled at the wellhead using a peristaltic pump 

after purging three well volumes and after field parameters stabilized. Surface water samples 

were collected approximately one foot below the air-water interface in knee-depth waters along 

the shoreline (TCEQ 2012). Porewater was sampled at the same locations with surface water at 

approximately 0.2 m below the sediment-water interface with a push-piezometer sampler 

attached to a peristaltic pump after stabilization of field parameters (RCRA SOP 2009). All water 

samples were collected in 1 L HPDE bottles previously acid-washed with 20% hydrochloride 

acid, rinsed with 18.2 MΩ cm water, and finally triple-rinsed with sample water, were placed in 

ice until transported back to the lab and filtered through 0.2 µm pore-sized polycarbonate 

membranes within 24-48 hours. Samples were then frozen until analysis. 

3.3.2. Submarine groundwater discharge estimates 

SGD rates were calculated using Darcy’s law and radium activities, as described below. 

3.3.2.1. Darcy discharge rate estimates  

Darcy’s law estimates of groundwater velocity (v, Darcy’s Law formulas below) of 

“local” shallow, brackish to hypersaline SGD were derived using water level data from the 

groundwater monitoring wells. Hydraulic conductivity data was estimated from a series of 

well/sediment core data collected at the installation of each monitoring site. This field analysis 

provided knowledge about how grain size, sorting, composition, and porosity changed with 

depth. With these categories and an idea of where the water table lies, base hydraulic 

conductivity values ranged between 10-2  to 10-7 cm/s, as dependent on the sedimentary make-up 

of the conductive saturated layer using standard values from Fetter (2001). 
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Darcy’s Law analysis was performed using the true or seepage velocity formula: v = K·i·/n; 

where K is the hydraulic conductivity, i is the hydraulic gradient, and n is effective porosity. The 

distance used to calculate the hydraulic gradient is the distance between the monitoring wells and 

the water line along the shoreline.  The tidal activity was subtracted from the groundwater level 

at each well to get a true idea of the water’s change in head. An effective porosity ranging from 

0.05 to 0.15 was used for velocity estimates. The saltwater heads of the groundwater and 

seawater levels were converted to freshwater heads using estimated water densities based on the 

temperature and salinity of the water. 

3.3.2.2. Radium mass balance and SGD rates 

Surface water samples for radium (radium-224 [224Ra], radium-226 [226Ra]) analysis were 

collected in 20L jugs (approximately 19 to 21 L total volume) at each of the sampling sites by 

wading into the water and rinsing and filling the bottle in the wave zone. Samples from the 

monitoring wells and porewaters were collected in 10L collapsable cubes. The radium was 

extracted by processing the samples through ~15g manganese dioxide, MnO2, impregnated 

acrylic fibers at a flow rate <1 L∙min-1 (Kim, Burnett et al. 2001, Dimova, Burnett et al. 2007). 

The Mn-fibers were then rinsed thoroughly with Ra-free water to eliminate any salts or 

particulates and then pressed to a water-to-fiber ratio of 0.3-1g (i.e., 20-30g wet weight) (Sun and 

Torgersen 1998). The fibers were tested for 224Ra (half-life: 3.6 days) on a Radium Delayed 

Coincidence Counter (RaDeCC). Activities of 224Ra were measured within three days of 

collection, given the short half-life (Moore 2006). After the short-lived isotope measurements, 

the fibers were flushed with nitrogen gas and sealed for >21 days to reach secular equilibrium 

before measuring the 226Ra (half-life: 1,600 years) on a RAD-7 with measurements corrected to a 

calibration curve determined from 5 standards (Moore 1996).  

Following Null et al. (2014), a mass balance for each Ra isotope was developed using 

Moore’s (1996) method. Brackish SGD fluxes were estimated by assessing excess Ra activities 

within the coastal zone up to approximately 50 m from the water line. The area was segmented 

into four areas, as shown in Figure 2.1. Our Ra mass balance model quantifies only brackish SGD 

into the coastal zone, excluding freshwater discharge due to Ra’s salinity dependence (Webster 

Hancock and Murray, 1995; Null et al., 2014). The selected endmembers for the box model 

calculation were the average Ra activities from porewater and monitoring wells at each 

corresponding surface water location of the four regions. Fluxes of SGD to the gulf (D) were 

calculated with a modified version of Eq. (1) from Moore (1996): 

𝐷(𝑚3 ∙ 𝑑−1) =
(𝑉𝑏𝑜𝑥)(𝐴𝑏𝑜𝑥−𝐴𝑜𝑓𝑓𝑠ℎ𝑜𝑟𝑒)

τ×𝐴𝑔𝑤
                                                                             Eq. 1 

where 𝑉𝑏𝑜𝑥 is the volume of the nearshore segment (e.g., the area from sites 2 to 5, the area 

from sites 7 to 14, the area for sites 15 to 16, the area for sites 18 to 19: 2.0 x 106, 1.8 x 106, 5.5 x 

105 and 2.9 x 105 m3 respectively), τ is the area’s water flushing time (Area for sites 2 to 5: x̄= 5.3 

and 25.5; Area for sites 7 to 14: x̄= 4.5 and 25.5; Area for sites 15 to 16: x̄= 5.5 and 16.5; Area for 

sites 18 to 19: x̄= 5.2 and 10.6 days for 223Ra and 226Ra based calculations respectively), Abox is the 

excess Ra activity in the box area, offshore Ra (Aoffshore), and groundwater or porewater endmember 

Ra. Volumetric rates were normalized to each respective area (Area for sites 2 to 5: 1.0 x 106 m2, 

Area for sites 7 to 14: 9.2 x 105 m2, Area for sites 15 to 16: 2.8 x 105 m2, Area for sites 18 to 19: 

1.5 x 105 m2) to derive advective SGD rates (m·d-1). This step is necessary to accurately determine 

the discharge rate per unit area and compare different regions of the study area, especially when 

comparing the regions of different sizes. 
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3.3.3. Groundwater level prediction: data preparation and analysis 

3.3.3.1. Data preparation: acquisition and sampling 

In this study, two distinct categories of datasets were used: Data obtained from online 

repositories and field samples collected from monitoring wells. Each dataset type plays a critical 

role in the overall analysis and is described in detail in the subsequent sections. The collected 

data encompasses continuous, observational measurements, while the sampled data refers to 

targeted, point-in-time observations. These two categories provide complementary insights, and 

their distinct characteristics are essential for developing a comprehensive understanding of the 

phenomena under investigation. Detailed explanations of the methodologies and data handling 

for both categories are provided in the following sections. 

Data acquisition 

The datasets utilized in this study comprised key hydrological and environmental 

variables: wind speed, wind direction, wind gust, water temperature, air temperature, tide level, 

rainfall, streamflow, Terrestrial water storage, baseflow runoff, storm surface runoff, root zone 

soil moisture, soil moisture content, GPM_3IMERGHHI, MRMS rainfall, and sea level pressure. 

These variables were downloaded across multiple locations (Table 3.1) to assess their 

relationships with bacteria levels and nutrient concentrations. By analyzing these environmental 

and hydrological factors, the study aims to identify potential correlations and better understand 

the drivers influencing bacterial and nutrient dynamics in the given areas. 

Table 3.1. Environmental and hydrological variables with temporal resolutions and data sources. 

Variables  Temporal 

Resolution 

Download Link 

Streamflow Hourly https://waterdata.usgs.gov/ 

Tide level Hourly https://tidesandcurrents.noaa.gov/ 

GPM_3IMERGHHI 30 minutes https://giovanni.gsfc.nasa.gov/giovanni/ 

Wind speed 

Wind direction 

Wind gust 

Air temperature 

Hourly https://tidesandcurrents.noaa.gov/ 

Precipitation Daily https://www.ncdc.noaa.gov/ 

Terrestrial water storage Daily https://giovanni.gsfc.nasa.gov/giovanni/ 

Baseflow runoff Daily https://giovanni.gsfc.nasa.gov/giovanni/ 

Storm surface runoff Hourly https://giovanni.gsfc.nasa.gov/giovanni/ 

Root zone soil moisture Hourly https://giovanni.gsfc.nasa.gov/giovanni/ 

Soil moisture content Hourly https://giovanni.gsfc.nasa.gov/giovanni/ 

MRMS rainfall Hourly https://mtarchive.geol.iastate.edu/ 

Sea level pressure Hourly https://giovanni.gsfc.nasa.gov/giovanni/ 

 

Sampled data: data preparation and laboratory analysis: processing and evaluation 

Twelve monitoring wells (Figure 3.1) were installed along the shoreline and at the 

bay/river outlet to collect groundwater samples, pore water, and surface water samples. Between 
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November 2021 and May 2023, 843 samples were collected. Table 3.2 presents the number of 

samples collected each month for surface, pore, and groundwater, along with the total samples 

for that month. Each well was equipped with a pressure transducer that continuously recorded 

the water table elevation every 15 minutes. 

Table 3.2. Monthly water sample data (2021–2023). 

Year Month Surface Pore Ground Total Samples 

2021 November 16 11 12 39 

2021 December 18 13 12 43 

2022 January 19 13 12 44 

2022 February 25 16 14 55 

2022 March 19 15 12 46 

2022 April 19 11 12 42 

2022 May 18 10 12 40 

2022 June 19 12 12 43 

2022 July 19 12 12 43 

2022 August 18 12 12 42 

2022 September 19 12 12 43 

2022 October 19 15 12 46 

2022 November 19 13 12 44 

2022 December 19 14 12 45 

2023 January 19 15 12 46 

2023 February 19 15 12 46 

2023 March 19 15 12 46 

2023 April 19 15 12 46 

2023 May 18 15 11 44 

Total   360 254 229 843 
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Figure 3.1. Photos of selected monitoring wells for the research. 

 

3.3.3.2. Modeling framework: development and validation 

Figure 3.2 outlines the systematic framework for groundwater level prediction, focusing 

on data preprocessing, model development, and validation. After multi-source data retrieval, the 

preprocessing phase ensures data quality and consistency through integration, noise removal, 

outlier correction, and standardization. Feature engineering further enhances the dataset by 

extracting meaningful attributes to improve model performance. The model development phase 

employs the XGBoost algorithm, chosen for its computational efficiency and ability to handle 

structured data. Optimal hyperparameters are defined, and the model is trained using K-Fold 

Cross-Validation to improve generalizability and mitigate overfitting. Hyperparameter tuning 

fine-tunes the balance between bias and variance, while the iterative training, validation, and 
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testing process ensure robust model refinement. Finally, the compiled model undergoes 

performance evaluation, where prediction accuracy is measured using Root Mean Square Error 

(RMSE), R2, and Mean Absolute Error (MAE). This rigorous process identifies the optimal 

model, delivering reliable groundwater level predictions for effective resource management. 

 

Figure 3.2. Flow chart of the research methodology. 

 

3.3.3.2.1. Data preprocessing 

After the dataset is collected, a thorough cleaning process is conducted to ensure quality 

and relevance for modeling. Missing values are addressed using K-Nearest Neighbors (KNN) 

imputation, noisy data is mitigated through filtering or transformations, and irrelevant images 

and datasets unsuitable for the model are removed. This systematic approach enhances data 

integrity and prepares it for the modeling phase. Figure 3.3 illustrates a summary of the 

preprocessing steps undertaken. 
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Figure 3.3. Key steps in data preprocessing. 

 

3.3.3.2.2. Variational Auto-Encoder (VAE) and Principal Component Analysis (PCA)  

In this study, two distinct approaches were utilized to explore relationships within the 

chemical dataset: Principal Component Analysis (PCA), a statistical technique for uncovering 

underlying patterns and reducing dimensionality, and Variational Auto-Encoder (VAE), a deep 

learning-based method for identifying complex, non-linear interactions among the variables. 

However, PCA was insufficient for capturing the intricate relationships in the dataset, as it is a 

traditional technique that may not fully account for the complexity of water chemistry.  

Variational Auto-Encoder (VAE) is an artificial neural network architecture introduced by 

Diederik P. Kingma and Max Welling (Kingma and Welling, 2014), and it is an extension of the 

traditional autoencoder that adds a probabilistic approach to the learning process. In a Variational 

Autoencoder (VAE), the encoder maps the input data into a probabilistic distribution (typically 

Gaussian) instead of a fixed representation, enabling a more adaptable data representation. 

Rather than learning a specific code, the VAE models a distribution over the latent variables, 

allowing for sampling from this distribution during the decoding process. The decoder then 

reconstructs the data from this latent space, attempting to generate output that closely resembles 

the original input but using the probabilistic representation. Below are the results of applying 

deep learning techniques to the chemistry dataset using the original and transformed data.  

3.3.3.2.3. Transformation techniques 

The scale of bacteria levels in the dataset varies significantly, with some days showing 

extremely high values. To address this, logarithmic and Box-Cox transformations were applied to 

normalize the data and mitigate the impact of outliers. These transformations enhanced the 

correlation between the bacteria data and the chemistry dataset, making the relationships more 

interpretable and reliable for analysis. In addition, environmental and hydrological factors were 

incorporated into the analysis by employing various data transformation techniques, such as 
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lagging data, normalization, cumulative sums, differencing, logarithmic transformations, 

smoothing techniques, polynomial features, categorical encoding, and feature selection. These 

methods helped refine the dataset and improve the robustness of the modeling approach. 

Modeling bacteria levels based on wind direction is challenging because wind direction is 

a physical phenomenon influenced by meteorological conditions. In contrast, bacteria levels are 

typically driven by environmental factors like water quality, temperature, or contamination 

sources. However, relationships might exist indirectly, such as wind patterns influencing bacteria 

transport or dispersal. To address this, wind direction was transformed to account for its circular 

nature, incorporating additional axes to align with local environmental patterns (Wolfe et al., 

2023). Figure 3.4 illustrates the wind speed and wind direction rose diagrams for the seven 

stations utilized in this study. Each diagram provides insight into the dominant wind directions 

and their corresponding speeds at each location. 

 

Figure 3.4. Wind Direction Rose Diagram for Seven Stations: Visual representation of wind 

direction frequencies across all stations. Each diagram highlights the dominant wind patterns, 

with the length of each bar indicating the proportion of time the wind blew from a particular 

direction, aiding in understanding regional wind trends and their environmental impact. 

 

3.3.3.2.4. GIS-Ensemble model and validation 

A machine learning model was developed in this research to predict groundwater 

elevations by integrating transformed environmental and hydrological factors. Among the 

various machine learning and deep learning techniques tested—such as Multilayer Perceptron 

(MLP), Random Forest, and Long Short-Term Memory (LSTM)—the XGBoost model 

demonstrated superior performance. XGBoost model, a gradient boosting machine learning 

technique known for its high performance in predictive tasks. The model is trained using the 
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preprocessed data, along with hourly groundwater levels collected from 11 monitoring wells 

between November 2021 and May 2023. Geographic Information System (GIS) tools were used 

to extract and organize data based on specific watersheds, enabling a more precise spatial 

analysis of groundwater dynamics.  Hyperparameters are defined and optimized using K-fold 

cross-validation to improve model accuracy. The model is then trained on the dataset, followed 

by hyperparameter tuning to refine its performance. The final trained model is evaluated using 

performance metrics like RMSE, MAE, and R2 to assess its predictive capability for groundwater 

levels. 

 

3.4. Results 

3.4.1 Sediment core characterization 

The following provides a detailed description of the sediment cores, and the observed 

layered heterogeneity based on depth intervals, sediment type, and grain size, as represented in 

Figure 3.5 below. A summary of the sediment core analyses by well is as follows: 

Well #1: The sediment core is dominantly characterized by clay with silt and sand lenses 

interspersed at various depths. Between 400 and 600 cm, the layers consist of compacted clay 

with minimal moisture, indicative of drier, consolidated material. Deeper layers transition to 

wetter conditions, with intervals of sandy silt and clay-silt mixtures, reflecting a finer-grained 

sediment composition. 

Well #2: This sediment core consists primarily of clay-silt mixtures, with some organic 

content observed near the surface. Layers of sandy clay appear at various depths, interbedded 

with finer silts. Sediments are predominantly wet, with intervals exhibiting varying plasticity that 

correlates to changes in clay content and compaction. 

Wells #3 and #4: The sediment cores display complex layering of fine silt, clay, and 

sandy textures. Notably, the sediments at these locations contain distinct intervals of sandy silt 

interbedded with clay layers. Colors range from gray and olive gray to brown, suggesting organic 

material and mineral variations. Sediments maintain wet conditions throughout, indicating 

consistent water retention. 

Well #5: This sediment core exhibits alternating layers of sandy silt, clay, and sand, with 

surface intervals containing sand, silt, and plant roots. Deeper sections are dominated by fine 

clay and clay-sand mixtures, which appear more compact and drier. The varying textures suggest 

episodic shifts in depositional energy. 

Wells #7 and #8: These wells display significant variability: 

• Well #7: The upper layers are predominantly gravel and sand, transitioning to fine clay 

and gravelly silt at depth. Sediment colors range from yellow-orange to olive-gray, 

reflecting mineralogical changes. Moisture levels vary from slightly moist to saturated, 

with deeper clay layers indicating high plasticity. 

• Well #8: This core contains sandy clay, with interbedded clay and silt layers, maintaining 

a generally wet condition. Some intervals include sand and gravel, indicative of coarser-

grained depositional events. 



26 

 

Well #9: This core is primarily comprised of sand. Deeper intervals exhibit higher sand 

content and maintain wet, loose conditions. Sediment colors range from white-gray to olive-gray, 

suggesting variations in mineral composition. 

 

Figure 3.5. Soil texture depth profile by well. Note the persistence of sands for most of the 

sedimentary facies except for well #1, which is located inland and not included in the analyses. 

Well #10: The sediment core consists predominantly of fine silt and clay, with 

interbedded sand and gravel lenses occurring sporadically. Sediments are predominantly wet, 

with certain intervals of sandy clay reflecting higher depositional energy. Deeper sections show 

clay dominance, with high plasticity observed in finer-grained zones.iWell #11: At this location, 

the sediment layers of fine clay mixed with silt and sand, with a higher organic content near the 

surface. The moisture levels fluctuate between ilightly plastic and saturated, with deeper sections 

containing loose, wet silts. This variability suggests changes in sediment deposition and 

compaction. 

Wells #13 and #14: At these locations, sediments exhibit alternating fine sand, silt, and 

clay layers. Shallow intervals (0–100 cm) are dominated by fine silt and clay mixtures, 

transitioning to sandy clay at depth. Moisture levels range from dry to saturated, with certain 

intervals showing varied plasticity and silt-dominated textures. 

These sediment cores, collected from coastal and near-coastal environments, highlight a 

diverse range of sedimentological features influenced by hydrological processes, depositional 

history, and depth-related compaction. The sediment textures—ranging from clay and silt to 

sand, gravel, and plant roots—reflect variability in depositional energy and water table dynamics. 

3.4.2. Data analysis: statistical summary, correlations, and distributions of 

groundwater elevations 

3.4.2.1. Statistical summary 

The statistical summaries for the variables of interest, categorized by parameter, are 

presented in the tables below. Table 3.3, Table 3.4, Table 3.5 provide detailed statistical 

descriptions for surface, pore, and groundwater samples, respectively. 
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Table 3.3. Statistical summary of water quality variables in groundwater samples (Nov 2021-

May 2023). 

Column Mean Min Max Variance Standard 

Deviation 

Coefficient of Variation 

(CV) 

DO 3.1 0.2 8.5 4.3 2.1 66.5 

Sal 3.0 0.3 14.3 16.0 4.0 132.3 

pH 7.1 5.4 8.6 0.2 0.5 6.7 

ORP -18.0 -205.8 272.7 12293.4 110.9 -615.7 

Rn 3404.4 0.0 30141.1 21821125.6 4671.3 137.2 

Ra223 46.8 -0.8 577.1 5390.9 73.4 156.7 

Ra224 1108.8 22.7 7813.2 1554661.6 1246.9 112.5 

Ra226 254.2 69.8 878.0 34166.0 184.8 72.7 

 

Table 3.4.  Statistical summary of water quality variables in porewater samples (Nov 2021-May 

2023). 

Column Mean Min Max Variance Standard 

Deviation 

Coefficient of Variation 

(CV) 

DO 2.9 0.5 10.2 2.5 1.6 55.6 

Sal 26.7 0.9 38.1 35.4 5.9 22.3 

pH 7.6 6.4 8.6 0.1 0.4 4.7 

ORP 40.4 -331.0 317.2 11696.1 108.1 267.9 

Rn 1420.2 0.0 6646.6 1065431.3 1032.2 72.7 

Ra223 165.7 0.0 1705.9 25791.5 160.6 96.9 

Ra224 3046.8 23.2 13037.9 3909267.3 1977.2 64.9 

Ra226 491.9 147.0 1887.0 84489.6 290.7 59.1 

 

 

Table 3.5. Statistical summary of water quality variables in surface water samples (Nov 2021-

May 2023). 

Column Mean Min Max Variance Standard 

Deviation 

Coefficient of Variation (CV) 

DO 7.6 1.9 12.3 1.6 1.3 16.8 

Sal 26.4 0.6 36.0 32.0 5.7 21.4 

pH 8.0 7.0 8.9 0.1 0.3 3.4 

ORP 92.9 -123.5 289.2 5369.9 73.3 78.9 

Rn 29.0 0.0 644.2 3211.7 56.7 195.5 
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Ra223 36.9 0.0 660.6 1939.9 44.0 119.4 

Ra224 546.3 59.2 7477.4 323877.3 569.1 104.2 

Ra226 250.1 43.9 945.5 24673.0 157.1 62.8 

 

The raw groundwater level data were carefully cleaned to remove noise and 

inconsistencies, ensuring reliable input for analysis. This step included filtering out errors to 

produce a high-quality dataset. The heatmap displays the correlation coefficients between 

groundwater levels across various wells. As shown in Figure 3.6a, Wells 3 and 5 exhibit a high 

correlation (~0.97), suggesting similar patterns in their groundwater level fluctuations, while 

Wells 2 and 9 show a lower correlation (~0.42), indicating differences in their behavior. Figure 

3.6b illustrates the data trends over time for the selected wells, highlighting variations that likely 

reflect a combination of local environmental and hydrological factors, as well as differences in 

slope, elevation, and watershed characteristics. These variations influence groundwater elevation 

changes at different locations, which may respond similarly or differently depending on the 

location. This affects the observed fluctuation patterns across wells, reflecting the unique 

responses to hydrological processes such as flow and recharge. 
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Figure 3.6. (a) Heatmap of correlation coefficients between groundwater levels at different 

wells. (b) Line chart showing groundwater level variations over time for the selected wells. 

3.4.2.2. Radium activities 

Radium-224 activities 

Porewater exhibited the highest mean 224Ra activity (3,047 Bq/m³), with a maximum of 

13,038 Bq/m³ observed at station P14 in May 2023. This peak indicates intense radium 

mobilization from sediments, possibly driven by episodic geochemical or hydrological events, 

such as increased SGD discharge or sediment disturbances and mobilization due to increases in 

salinity within the groundwater-surface water freshwater-seawater interface. The lowest 224Ra 

activity in porewater was 23 Bq/m³, recorded in September 2022 at P14, where reduced SGD or 

sediment interactions have occurred. Temporal trends in porewater activities showed consistently 

high levels, with peaks during May 2023 and July 2022, aligning with seasonal SGD patterns. 

Stations P10 and P14 also exhibited substantial variability, with periodic spikes exceeding 6,000 

Bq/m³. 

Surface water displayed much lower mean activity (547 Bq/m³), with a maximum of 

7,477 Bq/m³ recorded in March 2022 at station S5, expected to result from large SGD inputs 
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derived from nearby sources. The minimum activity of 59 Bq/m³ occurred at S20 in February 

2022, indicative of dilution by offshore Gulf waters and/or reduced SGD inputs. Like porewater, 

August 2022 was a notable month for elevated surface water activities, particularly at stations 

S1, S10, and S17, where radium-enriched groundwater discharges influenced the observed 

spikes. Stations S6B and S12, by contrast, maintained relatively stable activities, with levels 

ranging between 195 and 225 Bq/m³, showing minimal interaction with groundwater and limited 

porewater fluxes. 

Groundwater samples showed moderate variability, with a mean 224Ra activity of 1,071 

Bq/m³. The highest activity (7,813 Bq/m³) was recorded at station W9 in November 2021, 

potentially linked to deeper aquifer inputs rich in radium. However, long residence times and 

increased salinities due to prolonged saltwater intrusion (e.g., high tides) events allow for radium 

dissolution from sediments. The lowest 224Ra activity (23 Bq/m³) was observed at W7 in May 

2022, indicating limited radium mobilization or mixing or recent recharge from precipitation. 

Darcy’s groundwater discharge rates in this location indicate potential saltwater intrusion, thus 

causing dilution of ambient aquifer activities with the depleted seawater.  Temporal patterns in 

groundwater showed elevated activity during November 2021, February 2022, May 2023, and 

August 2022. Station W10 mirrored patterns seen in porewater, with consistent peaks correlating 

with SGD pulses during the late summer. 

All three sample types showed elevated 224Ra activity in August 2022, suggesting strong 

SGD contributions during the late summer months. Porewater and groundwater exhibited 

complementary peaks, indicating that interactions between these systems are substantial. Stations 

S5 and P14 displayed significant peaks across surface and porewater, respectively, underscoring 

their roles as hotspots for SGD-driven radium mobilization. Station W7 showed similar behavior 

for groundwater, particularly in November 2021. Stations S15 and S20 in surface water, W5 in 

groundwater, and P4 in porewater maintained relatively consistent 224Ra activity, reflecting 

minimal influence from episodic or seasonal variations. All sample types showed a general 

pattern of higher activities during summer months (e.g., August 2022 and July 2022) and lower 

levels during late winter (e.g., March 2022), emphasizing the seasonal influence on SGD 

dynamics and sediment-water interactions. 

Radium-223 activities 

Activities of 223Ra are generally much lower than those of 224Ra, given the lower 

abundance of the parent isotope in sediments along the Gulf Coast Aquifer. Thorium-227 is part 

of the decay chain of Uranium-235 and is a precursor to 223Ra. This relationship is relevant in 

environmental and geochemical studies, as radium isotopes like ²²³Ra are often used to trace 

SGD or to study sediment-water interactions (Moore and Arnold, 1996). Thorium-227 tends to 

be particle-reactive and binds to sediment particles. From there, it decays into 223Ra, which can 

be more mobile in porewater or released into the overlying water column. 

Notable spatial and temporal variability in 223Ra activities is observed among porewater, 

surface water, and groundwater samples along the coast. Porewater samples showed the highest 

mean 223Ra activity at 168 Bq/m³, with a peak of 1,706 Bq/m³ in February 2023 at station P2. 

Like 224Ra, this may reflect strong geochemical interactions and possibly substantial radium 

mobilization near the sediment-water interface. Other notable peaks in porewater occurred in 

July 2022 (1,042 Bq/m³ at P14), suggesting episodic inputs from terrestrial groundwater enriched 

in radium. 
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Surface water samples exhibited much lower mean activity (37 Bq/m³), with a maximum 

of 661 Bq/m³ observed in March 2022 at station S5, which stands out compared to increased 

nearshore groundwater inputs during the late summer months with associated higher surface 

radium. Temporal trends in surface water are generally more stable, but slight elevations in 

activity occurred in January 2022 (274 Bq/m³ at S6).  Moderate variability was observed in 

groundwater, with activities ranging from 0.1 Bq/m³ (at W4 in December 2022) to a peak of 577 

Bq/m³ recorded in November 2021 at W9. The November peak corresponds to the time of 

increased terrestrial input or mixing dynamics likely linked to seasonal (e.g., late summer-fall) 

recharge (see Darcy’s SGD section). Other minor peaks occurred in May 2023 (322 Bq/m³ at 

W11), aligning with similar trends seen in porewater. 

Monthly averages indicate dynamic interactions between groundwater-porewater-surface 

water. For instance, porewater activities, which were consistently higher than groundwater and 

surface water, are likely a source of radium to surface water and potentially to groundwater at 

times of low water table and saltwater intrusion. Porewater had sharp peaks in February 2023 

and December 2022, while surface water and groundwater showed their most significant 

increases during January 2022 and November 2021, respectively. From these observations, it can 

be inferred that porewater is a key reservoir that influences radium dynamics along the barrier 

island.  

Radium-226 activities 

Like 223Ra, the peak 226Ra activity was 8,411 Bq/m3 in a porewater sample, P19, in 

October 2022. This significant spike indicates specific localized geochemical conditions that are 

facilitating the heightened mobilization of radium from sediments located near the shore, among 

which could be input from deeper or more distant groundwater. On the other end of the spectrum, 

the lowest 226Ra activity measured was 42 Bq/m3, captured in surface water at S1 in August 

2022. These low levels may result from dilution with Gulf of Mexico offshore waters or 

insignificant terrestrial groundwater discharge. High 226Ra activities were observed in September 

and October 2022, with numerous instances exceeding the threshold of 800 Bq/m3. These 

frequent spikes may indicate intensified biogeochemical interactions between sediments and 

water during these months. Given that 226Ra does not recoil back into solution as quickly as the 

short-liver isotopes described above, the impact of salinity changes is not expected to be a large 

contributor to activity changes from month to month. However, high 226Ra activities could be the 

result of both increased SGD from nearby sources (of lower 226Ra activities) or proportionally 

lower terrestrial, more distant groundwater discharge that is generally richer in 226Ra. In 

groundwater samples, moderate 226Ra levels were generally detected, with peaks occurring in 

October 2022 and February 2023. The highest observation occurred in October 2022 (6,031 

Bq/m3). Surface water activities showed more stable trends overall, with a higher average 226Ra 

level in October 2022, similar to groundwater, with a maximum activity of 5,340 Bq/m3.  

A downward trend in 226Ra activity was generally observed during June 2022 and 

December 2021 across all sampling site types, suggesting the influence of seasonal or 

environmental factors, such as dilution and/or lower groundwater inputs. Levels of 226Ra above 

800 were predominantly recorded in porewater and groundwater. Porewater consistently 

exhibited high activities, frequently exceeding 800 Bq/m3, particularly notable in October 2022. 

Similar occurrences occurred in groundwater, where levels peaked above 800 in October 2022. 

Although surface water exhibited more stable patterns, it also reached a maximum activity of 
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5,340 Bq/m3 in October 2022, suggesting terrestrial groundwater inputs as significant sources 

during this time.  

Observed fluctuations in 226Ra levels may result from variable SGD inputs, both in 

magnitude and sources, or biogeochemical reactions and magnitudes of recirculation within the 

subsurface transition zone between groundwater and surface water. As with the short-lived 

radium isotopes, analysis of 226Ra also highlights significant temporal and spatial variability in 

activities, especially in porewater, indicating substantial nearshore radium dynamics.  

 

3.4.2.3. Measures of dispersion: violin plot 

Figure 3.7, Figure 3.8, and Figure 3.9 illustrate the distribution and outliers in the 

dataset using violin plots. The width of each violin plot indicates the density of data points at 

different values; wider sections signify higher concentrations of data points, while narrower 

sections suggest lower density. The height of each violin plot represents the range of the data, 

extending from the minimum to the maximum values, which provides an overview of the data's 

spread. A taller plot indicates a larger range of values, reflecting greater variability within the 

dataset. Together, the width and height of the violin plots provide a comprehensive view of the 

data distribution, highlighting where the majority of data points are concentrated and revealing 
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any potential outliers.

 

Figure 3.7. Violin plot for groundwater parameters. 
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Figure 3.8. Violin plot for pore water parameters. 
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Figure 3.9. Violin plot for surface water parameters. 
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3.4.3. Submarine groundwater discharge 

3.4.3.1 Darcy’s SGD rates 

Results from the Darcy’s Law calculations show that the average SGD rates from area 3 

(wells 7 to 14) are higher than those of area 4 (wells 2 to 5). A seasonal trend is more visible in 

area 3’s data than area 4, but both data sets match, which is that in the colder months (roughly 

September to March), SGD is at its peak but drops low in the warmer months (March to August). 

See Figure 3.10,Figure 3.11, Figure 3.12, andFigure 3.13. This seasonal trend is reflected in the 

velocity data from individual wells, particularly in area 3. The area near well 7 consistently 

displayed the highest groundwater discharge velocities, peaking at 187 cm/d in January 2023 and 

162 cm/d in December 2022 (Figure 3.11 and Figure 3.12). These high velocities align with the 

peaks in SGD for area 3 during the same months, reinforcing the strong response of this region to 

seasonal recharge events. In contrast, during the warmer months, negative velocities were 

recorded near well 7 in April 2022, May 2022, and June 2022, indicating seawater intrusion. This 

is consistent with the lowest SGD rate for area 3, recorded in May 2022 at -8.5 cm∙d⁻¹. The 

negative SGD rate and velocities reflect the influence of tidal reversals, as seawater levels 

exceeded groundwater elevations. Darcy’s Law calculations could only be performed for the area 

where wells were available as the groundwater elevations of the porewater are unknown. 

 

Figure 3.10. Darcy’s Law calculated SGD rates using freshwater heads from groundwater and 

Gulf of Mexico nearshore water levels. The negative values indicate that when the static 

groundwater level was measured in the month, the seawater level was higher, resulting in a 

negative/reverse gradient when seawater may intrude the water table aquifer, and negligible 

groundwater discharge will occur. 
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Figure 3.11. Groundwater discharge rates (velocity rates) over time for all locations 

corresponding to the monitoring wells in regions 3 and 4 (See Figure 2.1 for a location map). 

 

 

Figure 3.12. Groundwater discharge rates (velocity rates) across all locations corresponding to 

the monitoring wells in regions 3 and 4 (See Figure 2.1 for a location map). 
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Figure 3.13. Groundwater discharge rates (velocity rates) across months correspond to the 

monitoring wells in regions 3 and 4 (See Figure 2.1 for a location map). 

The variability in velocities among different wells highlights the differences between 

areas 3 and 4. For instance, while area 3 exhibited dynamic responses with high peaks near well 

7, area 4 demonstrated more stable velocity patterns. The area near well 3 consistently displayed 

velocities between 1 and 3 cm/d, with no reverse gradients recorded, indicating localized aquifer 

stability. Similarly, the area near well 10 peaked at 3.5 cm/d, reflecting limited tidal influence 

and stable recharge conditions. These patterns correspond to area 4's lower but more consistent 

SGD rates, which peaked at 8.0 cm∙d⁻¹ in January 2023 and reached a minimum of 2.4 cm∙d⁻¹ in 

December 2021. The highest peak for area 4 was 8.0 cm∙d⁻¹ in January 2023, the same time that 

area 3’s peak of 36.2 cm∙d⁻¹ was determined. For area 3, a similar peak was also reached in 

December 2022 of 31.6 cm∙d⁻¹. 

The lowest rate for area 4 was reached in December 2021 with a rate of 2.4 cm∙d⁻¹, while 

for area 3, the lowest rate was determined to be in May 2022 with a rate of -8.5 cm∙d⁻¹. This 

negative rate from Darcy’s Law indicates that some level of seawater intrusion is likely to have 

occurred as the sea level was higher than the groundwater elevation, causing seawater to intrude 

into the groundwater. The area near well 2 in area 3 further supports this observation, as reverse 

gradients were consistently recorded during November 2021, December 2021, and summer 2022, 

with velocities ranging from -1.4 cm/d to -0.6 cm/d. The swampy conditions and frequent 

flooding near this well, combined with tidal reversals, create conditions conducive to seawater 

intrusion. 

Overall, area 4 has more consistent but lower SGD rates over the course of the study, 

while area 3 has more variable rates that reach much higher (Figure 3.10) but include times of 
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seawater intrusion. The seasonal velocity peaks in wells like 7 (area 3) and 5 highlight the 

dynamic aquifer response to recharge events, particularly during colder months when SGD rates 

are highest. Conversely, wells in area 4, such as 3 and 10, illustrate stable hydrological 

conditions contributing to its lower but steady discharge rates. These findings emphasize the 

contrasting hydrodynamic behaviors of the two areas and their influence on SGD (Figure 3.10).  

 

3.4.3.2 Radium-224 SGD rates 

Results from the 224Ra mass balance using the well/shallow groundwater activities as the 

source/end member show significant spatial and temporal variability in SGD rates (Figure 3.14). 

Shallow groundwater-derived SGD consistently shows the highest rates in region 4, with a peak 

of 769 cm/day in March 2022. This extremely high discharge rate could be related to a 

hydrological event, such as seasonal aquifer recharge associated with high rain amounts, which is 

characteristic of the area in the spring, which elevates water tables and regional groundwater 

levels, enhancing groundwater discharge towards the Gulf. Another major peak occurred in June 

2022 (653 cm/day), further underscoring the dominance of region 4 in large-scale groundwater 

discharge dynamics. Sustained moderate rates were also observed during January 2023 (345 

cm/day) and April 2023 (415 cm/day).  

 
Figure 3.14. Radium-224 derived SGD rates using the shallow groundwater/water table as the 

source/endmember. 

In region 3, SGD rates were notably lower than in region 4 but still exhibited important 

seasonal contributions. The highest rate in this region was recorded in January 2022 (198 

cm/day), followed by smaller peaks in March 2022 (93 cm/day) and June 2022 (108 cm/day). 

These rates indicate sporadic contributions to SGD from region 3, with lower magnitudes than 

region 4. Groundwater was not monitored in regions 1 and 2. Thus, SGD rates calculated using 

this endmember are not available. 
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The SGD results using the porewater endmember reveal a different pattern of SGD 

compared to those derived using the water table/shallow groundwater endmember, with lower 

overall values and significant contributions from different areas at specific times (Figure 3.15). 

When using porewater as the endmember, the highest SGD rates were observed in region 1, with 

a peak value of 232 cm/day in May 2023, marking the largest discharge magnitude for this 

endmember across all regions and months. Additional elevated rates were noted in July 2022 

(141 cm/day) and January 2023 (61 cm/day), reflecting localized benthic flux contributions 

during these periods. This suggests that region 1, though not validated using the shallow 

groundwater inputs via water table monitoring, plays a significant role when considering 

porewater fluxes.  

 
Figure 3.15. Radium-224 derived SGD rates using the porewater as the source/endmember. 

Region 4 continued to show moderate but consistent SGD contributions with this 

endmember, with its highest rate recorded in March 2022 (147 cm/day), with other notable peaks 

in July (85 cm/day) and September 2022 (80 cm/day). However, these values are considerably 

lower than those observed when using the shallow groundwater endmember, indicating that the 

terrestrial freshwater inputs are likely higher than the recirculated counterparts. It is also possible 

that more enriched 224Ra groundwater inputs enter in the nearshore Gulf of Mexico waters 

rather than mixing in the water table aquifer of the barrier islands. In region 3, porewater-derived 

SGD exhibited intermittent activity, with peaks of 72 cm/day in September 2022 and 39 cm/day 

in July 2022. Unlike the shallow groundwater-derived SGD, no significant contributions were 

observed in March or June 2022, suggesting that SGD processes in this region may be more 

influenced by localized groundwater/terrestrial inputs rather than benthic interactions. Region 2 

displayed sporadic and low-magnitude SGD, with peaks in August 2022 (62 cm/day) and 

January 2023 (47 cm/day), showing minor contributions relative to other regions. 

The comparison between the two endmembers highlights key differences in the source 

and spatial dynamics of SGD. Region 4 dominated shallow groundwater-derived SGD rates, with 

discharge values exceeding 700 cm/day during critical months like March and June 2022. In 
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contrast, lower porewater-derived SGD rates like those in the same region, peaking at 147 

cm/day, suggest that deeper groundwater flow pathways are more active in this area. Conversely, 

region 1 is a dominant contributor from benthic or recirculated sources when using porewater as 

the endmember, particularly in May 2023, with the highest recorded discharge of 232 cm/day. 

The absence of overlapping peaks in certain regions and months, such as the lack of porewater-

derived SGD peaks in March and July 2022 in region 4, indicates distinct hydrological processes 

governing discharge patterns. Shallow groundwater-derived SGD reflects aquifer/terrestrial 

groundwater discharge, while porewater-derived SGD emphasizes more localized fluxes 

influenced by benthic and sediment interactions (e.g., recirculation). 

 

3.4.3.2 Radium-223 SGD rates 

Results from the 223Ra mass balance using the well/shallow groundwater activities as the 

source/end member show significant spatial and temporal variability in SGD rates (Figure 3.16). 

Shallow groundwater-derived SGD consistently shows the highest rates in region 4, with a peak 

of 769 cm/day in March 2022. This extremely high discharge rate could be related to a 

hydrological event, such as seasonal aquifer recharge associated with high rain amounts, which is 

characteristic of the area in the spring, which elevates water tables and regional groundwater 

levels, enhancing groundwater discharge towards the Gulf. Another major peak occurred in June 

2022 (653 cm/day), further underscoring the dominance of region 4 in large-scale groundwater 

discharge dynamics. Sustained moderate rates were also observed during January 2023 (345 

cm/day) and April 2023 (415 cm/day). In region 3, SGD rates were notably lower than in region 

4 but still exhibited important seasonal contributions. The highest rate in this region was 

recorded in January 2022 (198 cm/day), followed by smaller peaks in March 2022 (93 cm/day) 

and June 2022 (108 cm/day). These rates indicate sporadic contributions to SGD from region 3, 

with lower magnitudes than region 4. Groundwater was not monitored in regions 1 and 2. Thus, 

SGD rates calculated using this endmember are not available. 
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Figure 3.16. Radium-223 derived SGD rates using the shallow groundwater/water table as the 

source/endmember. 

The SGD results using the porewater endmember reveal a different pattern of SGD 

compared to those derived using the water table/shallow groundwater endmember, with lower 

overall values and significant contributions from different areas at specific times (Figure 3.17). 

When using porewater as the endmember, the highest SGD rates were observed in region 1, with 

a peak discharge rate of 232 cm/day in May 2023, marking the largest discharge magnitude for 

this endmember across all regions and months. Additional elevated rates were noted in July 2022 

(141 cm/day) and January 2023 (61 cm/day), reflecting localized benthic flux contributions 

during these periods. This suggests that region 1, though not validated using the shallow 

groundwater inputs via water table monitoring, plays a significant role when considering 

porewater fluxes.  

Region 4 continued to show moderate but consistent SGD contributions with this 

endmember, with its highest rate recorded in March 2022 (147 cm/day), with other notable peaks 

in July (85 cm/day) and September 2022 (80 cm/day). However, these values are considerably 

lower than those observed when using the shallow groundwater endmember, indicating that the 

terrestrial freshwater inputs are likely higher than the recirculated counterparts. It is also possible 

that more enriched 224Ra groundwater inputs enter in the nearshore Gulf of Mexico waters 

rather than mixing in the water table aquifer of the barrier islands. In region 3, porewater-derived 

SGD exhibited intermittent activity, with peaks of 72 cm/day in September 2022 and 39 cm/day 

in July 2022. Unlike the shallow groundwater-derived SGD, no significant contributions were 

observed in March or June 2022, suggesting that SGD processes in this region may be more 

influenced by localized groundwater/terrestrial inputs rather than benthic interactions. Region 2 

displayed sporadic and low-magnitude SGD, with peaks in August 2022 (62 cm/day) and 

January 2023 (47 cm/day), showing minor contributions relative to other regions. 
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Figure 3.17. Radium-223 derived SGD rates using the porewater as the source/endmember. 

The comparison between the two endmembers highlights key differences in the source 

and spatial dynamics of SGD. Region 4 dominated shallow groundwater-derived SGD rates, with 

discharge values exceeding 700 cm/day during critical months like March and June 2022. In 

contrast, lower porewater-derived SGD rates like those in the same region, peaking at 147 

cm/day, suggest that deeper groundwater flow pathways are more active in this area. Conversely, 

region 1 is a dominant contributor from benthic or recirculated sources when using porewater as 

the endmember, particularly in May 2023, with the highest recorded discharge of 232 cm/day. 

The absence of overlapping peaks in certain regions and months, such as the lack of porewater-

derived SGD peaks in March and July 2022 in region 4, indicates distinct hydrological processes 

governing discharge patterns. Shallow groundwater-derived SGD reflects aquifer/terrestrial 

groundwater discharge, while porewater-derived SGD emphasizes more localized fluxes 

influenced by benthic and sediment interactions (e.g., recirculation). 

3.4.3.3 Radium-226 SGD rates 

The analysis of SGD rates derived from 226Ra reveals notable spatial and temporal 

variability when using porewater and combined porewater/shallow groundwater averages as 

endmembers (Figure 3.18 and Figure 3.19). The results emphasize significant discharge 

contributions in specific regions and time periods. 
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Figure 3.18. Radium-226 derived SGD rates using the shallow groundwater/water table as the 

source/endmember. 

 
Figure 3.19. Radium-224 derived SGD rates using the porewater as the source/endmember. 

The highest 226Ra-derived SGD rate using porewater was observed in region 2, with a 

peak of 257 cm/day in March 2023. This high magnitude indicates a significant discharge event, 

possibly driven by seasonal hydrological heights, as explained in the 226Ra results section. Other 

notable peaks include region 3, where SGD reached 246 cm/day in August 2022, suggesting high 

activity during late summer. Using porewater 226Ra activities as the source of surface water, SGD 

rates were moderate in region 4, with a maximum of 108 cm/day in August 2023. This region 

showed consistent, though lower, contributions throughout the study period. Region 1 exhibited 

the lowest SGD rates overall, with a peak of 45 cm/day in May 2023, reflecting localized and 

smaller-scale discharge processes compared to other regions. 
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When considering porewater and shallow groundwater averages, region 3 displayed the 

highest SGD rate of 269 cm/day in August 2022, aligning with the peak observed in porewater 

during the same month. This indicates a strong convergence of discharge processes in this region 

during late summer. Region 4 followed closely with a peak of 266 cm/day in August 2022, 

suggesting substantial SGD contributions influenced by both shallow groundwater and 

recirculated/benthic sources. Region 2 showed a tendency for intermittent and elevated discharge 

events based on porewater-derived SGD rates. Regions 2 and 3 show the highest SGD rates, 

particularly in August 2022 (region 3) and March 2023 (region 2). These months reflect critical 

periods of high discharge, likely tied to seasonal aquifer recharge or enhanced SGD pathways. 

Region 4, on the other hand, has consistently moderate SGD rates, with sustained activity 

observed during months such as January 2023 and August 2022. While its peaks were lower than 

those in regions 2 and 3, region 4 remained a stable source of groundwater discharge over time. 

Region 1 exhibited the lowest overall discharge rates, with occasional peaks such as in May 2023 

(45 cm/day), emphasizing its limited but localized benthic/recirculated fluxes compared to the 

other regions. The use of combined porewater/shallow groundwater averages highlights August 

2022 as a key period of SGD activity in regions 3 and 4, with values exceeding 265 cm/day. In 

contrast, porewater-derived SGD underscores March 2023 (region 2) and August 2022 (region 3) 

as critical discharge events. While region 4 exhibited consistent discharge across both methods, 

regions 1 and 2 showed intermittent contributions, depending on the endmember used. These 

findings emphasize the importance of regional and temporal dynamics in SGD processes, with 

specific regions like 2 and 3 playing dominant roles during high-activity periods. The choice of 

endmember—porewater or combined averages—significantly influences the interpretation of 

discharge patterns. 

3.4.4. Groundwater level prediction: model development and evaluation 

Predicting groundwater levels is critical for managing water resources, mitigating 

environmental risks, and ensuring infrastructure integrity. Fluctuations in groundwater levels can 

significantly impact environmental systems and public health. For instance, rapid changes in 

groundwater levels may lead to groundwater contamination, especially when these changes reach 

buried infrastructure such as pipelines, septic systems, or utility corridors. This can facilitate the 

spread of bacteria and other contaminants, increasing the risk of waterborne diseases and 

ecological damage. XGBoost emerged as the best-performing model, demonstrating its 

robustness and adaptability to the complex, multivariate dataset.  and Figure 3.21 present the 

line charts for the model developed to predict groundwater levels in areas 3 and 4. Notably, in 

this study, we incorporated various latent variables that do not directly correlate with 

groundwater levels. Despite this, the performance of the model remains acceptable, with an 

RMSE of 0.061, R2 value of 0.93, and an MAE of 0.04 for area 3, as well as an RMSE of 0.05, 

R2 value of 0.97, and an MAE of 0.03 for area 4, which demonstrates the model's robustness and 

predictive capability. 

The model successfully captures the overall trend and changes in groundwater levels, 

even when considering factors that indirectly influence them. This indicates that the model 

generalizes well to unseen data and provides reliable predictions for future groundwater level 

variations. Such predictive accuracy is essential for proactive water management and minimizing 

risks associated with fluctuating groundwater levels, including bacterial contamination and 

potential harm to buried infrastructure.  
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Figure 3.20. Performance of the Groundwater Level Prediction Model for Wells 7, 8, 9, 10, 

11, and 13 (Area 3). 
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Figure 3.21. Performance of the Groundwater Level Prediction Model for Wells 2, 3, 4, and 5 

(Area 4). 

In this research, feature importance was computed to understand how different 

environmental and hydrological factors influence groundwater levels at various wells. The model 

used to predict groundwater levels (e.g., XGBoost) provided feature importance scores that 

helped to identify which factors are most influential at each groundwater monitoring location. As 

shown in Figure 3.22, groundwater levels in the Well 7 area are strongly influenced by 

streamflow, rainfall, and soil moisture. These factors play a particularly significant role during 

heavy rain and tidal fluctuations when their combined effects on water recharge and groundwater 

levels are most pronounced. In contrast, well 11 shows a higher sensitivity to rainfall and soil 

moisture, with smaller contributions from tide and streamflow. The results indicate that the 

shallow groundwater levels at different locations are influenced by distinct environmental 

conditions. By identifying the key factors that influence each well, predictions can be made more 

efficiently and accurately, ultimately saving time and resources. These findings highlight the 

importance of considering local environmental and hydrological factors when developing 

predictive groundwater-level models. 

Due to the heterogeneity and complexity of dynamic processes in groundwater systems, 

suitable methods are essential for accurately capturing their temporal and spatial variations. 

While numerous techniques have been explored to quantify groundwater variations across 

temporal and spatial scales, each with its own strengths and limitations, this study introduces a 

data-driven predictive model to predict daily regional groundwater levels in distinct watersheds. 

The study area was divided into four distinct locations based on their watersheds. This approach 

allowed the developed model to capture the unique characteristics of each region, which 

improved the accuracy of groundwater level predictions. By taking into account localized 
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hydrological variations and site-specific factors, the model provided more reliable results, which 

can help tailor management strategies to the specific characteristics of an area. Temporal 

variability in groundwater is primarily driven by hydro-meteorological conditions, as 

demonstrated in previous studies (Chang et al., 2016). Our analysis shows that the proposed 

advanced machine learning model could capture temporal-spatial variations and provide reliable 

predictions for the given dataset, demonstrating high correlation coefficients and low RMSE 

values.  

 

Figure 3.22. Feature importance for area 3: the top 20 most important features based on the 

weight metric for predicting groundwater elevation at multiple wells. Each subplot corresponds 

to one well, with features ordered by their contribution to reduce the model’s error. Bars 

represent the importance of each feature, and values on the bars indicate their relative 

importance score. 
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Figure 3.23. Feature importance for area 4: the top 20 most important features based on the 

weight metric for predicting groundwater elevation at multiple wells. Each subplot corresponds 

to one well, with features ordered by their contribution to reduce the model’s error. Bars 

represent the importance of each feature, and values on the bars indicate their relative 

importance score. 

The model assigns importance scores to various factors based on how much they 

contribute to predicting groundwater elevation. Areas 3 and 4 are located in Watershed 11 

(Figure 3.24) Area 3, which includes wells 7, 8, 9, 10, 11, 13, and 14, is influenced by factors 

such as streamflow and soil moisture. In contrast, Area 4, which includes wells 2, 3, 4, and 5, is 

primarily affected by terrestrial water storage and rainfall. The following presents a detailed 

description of the factors correlated with groundwater elevation in each well, as indicated by the 

model results: 

Well #2: Average territorial water storage holds the highest significance with a score of 

0.59, followed by average soil moisture at 0.06. Other key factors include cumulative rainfall 

from station HCCT2 over 15 days (0.04), and from station KGLS (Figure 3.24) over 7 days 

(0.04), as well as combined cumulative rainfall from KGLS and LGCT2 over 10 and 15 days, 

respectively (0.02). Additionally, tidal influences at stations 8771486 with lags of -4 and 5 days, 

and 8771013 with lags of -5 and 4 days, along with cumulative rainfall from KGLS station over 

5 days, CBAT2 rainfall station over 5 days, average root soil moisture for the area 4, and 

streamflow at station 08078930, all show a contribution of 0.01 in the model (Figure 3.23). This 

demonstrates that the model can uncover latent variables, allowing for a deeper understanding 

and accurate prediction of groundwater elevation. Well #3:  Average territorial water storage 

holds the highest significance with a score of 0.32, followed by the KLVJ rainfall station with 

15-day cumulated rainfall (0.12), and BZRT2 rainfall with 7-day cumulated rainfall (0.09). 

Additionally, average soil moisture, tidal influence at station 8771450 with a lag of 6 days, 
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streamflow at station 08078930, all have an importance score of 0.05. Rainfall from BZRT2 

station with 15-day cumulated rainfall (0.04), average root soil moisture, and rainfall from 

CCBT2 station for 7 days contribute 0.03. Streamflow at station 08077110 also holds a score of 

0.02. Other key factors, as shown in Figure 3.23, have an importance score around 0.01 in the 

model. 

Well #4: The highest significance is held by the LGCT2 rainfall station with a 15-day 

cumulative value (0.25), followed by average soil moisture (0.22), and streamflow at station 

08077110 (0.17). Factors include BZRT2 rainfall station with a 15-day cumulative value and 

average territorial water storage, showing scores of 0.07 and 0.04, respectively. MOKT2 rainfall 

station with a 7-day cumulative value, average root soil moisture, and HCCT2 with a 15-day 

cumulative value, wind direction at station 8771013 (EW_60) all contributing 0.02. Additionally, 

tidal influences at stations 8772471, 8771013 with lag times along with streamflow at station 

08117301, all have an importance score of 0.01. 

Well #5: The highest significance is held by average soil moisture for the area 4 (0.34), 

followed by streamflow at station 08077110 (0.15). Other key factors include BZRT2 rainfall 

station with a 15-day cumulative value (0.09), KLVJ rainfall station with a 10-day cumulative 

value (0.07), CCWT2 with a 10-day cumulative value (0.05), and KLBX rainfall station with a 

15-day cumulative value (0.03). Additionally, MRMS rainfall located in Well 3, average 

territorial water storage, and CCBT2 rainfall station with a 10-day cumulative value, all show a 

contribution of 0.02. Other factors, such as streamflow at station 08078930, average root soil 

moisture, and tidal influences at station 8772471, have values less than 0.01. 

Well #7: Streamflow at station 08078930 has the highest significance with a score of 

0.23. MOKT2 rainfall station for 10 days and HCCT2 rainfall station for 4 days are both 0.09, 

followed by DNCT2 rainfall station for 5 days at 0.07. Average soil moisture, BZRT2 rainfall for 

4 days, and UCCT2 rainfall for 10 days are all 0.04. Additionally, LGCT2 for 10 days, LPST2 

for 5 days, and LGCT2 for 7 days contribute 0.03. HCCT2 rainfall for 15 days, KLVJ rainfall for 

7 days, LGCT2 rainfall for 15 days, and DNCT2 rainfall for 15 days have a value of 0.02. Other 

factors, such as streamflow at station 08116650, other rainfall stations, and tide level at station 

8771972 with a lag of 5 days, show 0.01. 

Well #8: Streamflow at station 08117210 has the highest significance at 0.21, followed by 

average soil moisture at 0.14, and LPST2 rainfall for 10 days at 0.11. Other key factors include 

average terrestrial water storage (0.07), OBRT2 rainfall for 15 days (0.06), and KLBX rainfall 

for 7 days (0.04). Additionally, tide level at station 8772471 with a lag of 3 days contributes 0.03, 

while BZRT2 and MOKT2 with 15-day and 10-day accumulations, respectively, both show a 

value of 0.03. MOKT2, UCCT2, and BZRT2 all with 10-day accumulations, along with DNCT2, 

LPST2, and MCFT2 with 15-day accumulations, are all 0.02. 

Well #9: BZRT2 rainfall station for 10 days has the highest significance at 0.08, followed 

by MOKT2 rainfall station for 15 days at 0.10, and streamflow at station 08078000 at 0.08. 

Other key factors include CBAT2 rainfall station for 10 days (0.07), streamflow at station 

08079010 (0.04), and CCWT2 rainfall station for 5 days, KGLS rainfall station for 15 days, 

MOKT2 rainfall station for 7 days, HCCT2 rainfall station for 15 days, KLVJ rainfall station for 

15 days, and wind direction at station 8771972 (EW) all contributing 0.03. Additionally, average 

soil moisture and average root zone soil moisture both show a value of 0.02. Other factors, such 
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as wind direction at station 8771972 (NS-30) and streamflow at East River station 08117301, 

along with other factors, are 0.01 or less. 

Well #10: Streamflow at station 08078000 has the highest significance at 0.13, followed 

by BZRT2 rainfall for 15 days at 0.12. Other key factors include CCBT2 rainfall with a 10-day 

cumulative value (0.06), and KLVJ rainfall for 15 days (0.06). Additionally, average soil 

moisture and MOKT2 rainfall for 5-day accumulative values are both 0.05, while LPST2 rainfall 

for 15 days and CCBT2 for 7 days contribute 0.04. Tide level at station 8772471 with a lag of 4 

days is 0.03, and UCCT2 rainfall for 15 days is 0.03. Furthermore, KGLS rainfall for 3 days and 

4 days, CBAT2 for 10 days, MOKT2 for 4 days, and LGCT2 for 15 days are all 0.02. Other 

factors, such as average terrestrial storage, streamflow at station 08117210, tide level at 8772471 

with a lag of 5 days, and other rainfall stations, are 0.01. 

Well #11: Rainfall at OBRT2 station with a 3-day cumulative value is 0.34, and a 4-day 

cumulative value is 0.12. Rainfall at station BZRT2 for 10 days contributes 0.05, while average 

soil moisture and rainfall at OBRT2 station both show values of 0.04. Additionally, rainfall at 

BZRT2 and LGCT2 stations with 2-day and 10-day accumulative values, respectively, are both 

0.03, and LGCT2 rainfall for 3 days is 0.02. Other rainfall stations and streamflow at station 

08078000 have values 0.01. 

Well #13: KLVJ rainfall station with a 10-day cumulative value is 0.22, followed by 

streamflow at station 08078930 (0.13). Rainfall from MOKT2 for 3 days, OBRT2 for 5 days, 

LPST2 for 15 days, and BZRT2 for 5 days contribute 0.09, 0.08, 0.07, and 0.07, respectively. 

Average soil moisture shows a value of 0.05, while LGCT2 rainfall station for 7 days is 0.04. 

Additionally, BZRT2, MOKT2, and BZRT2 rainfall stations with 7-day, 5-day, and 10-day 

cumulative values are 0.02. Other factors show values of 0.01 or less. 

Well #14: MOKT2 rainfall for 10 days has the highest significance at 0.15, followed by 

LPST2 rainfall for 15 days at 0.13. Streamflow at station 08117210 contributes 0.10, and 

UCCT2 rainfall for 15 days and 7 days shows values of 0.08 and 0.06, respectively. BZRT2 

rainfall for 5 days and KGLS rainfall for 7 days are both 0.05. Additionally, KGLS for 4 days, 

KLBX rainfall for 15 days, and streamflow at station 08078930 are 0.04. Average soil moisture 

contributes 0.03, while BZRT2 rainfall for 7 days, MOKT2 rainfall for 15 days, average root 

zone soil moisture, and KGLS rainfall for 5 days are all 0.02. Other factors, such as average 

surface runoff, streamflow at station 08117301, and other rainfall stations, show values of 0.01. 
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Figure 3.24. The spatial distribution of stations monitoring environmental factors within the 

study area. 

According to Figure 3.23, Wells 4 and 5 are near Jamaica Beach, suggesting a stronger 

connection with the tidal and coastal hydrological processes. This is why more tidal stations are 

among the top 20 most important features. On the other hand, Wells 2 and 3 are located farther 

north and are likely shielded from direct tidal influences by land features. Area 4 is most 

significantly impacted by terrestrial water storage and rainfall. Variations in terrestrial water 

storage can directly influence groundwater levels and indirectly alter flood risk (Asoka and 

Mishra., 2020). Being closer to the coast, wells 4 and 5 are more influenced by surface 

hydrological factors like tidal fluctuations, direct rainfall, and streamflow. The higher importance 

of soil moisture and streamflow (Figure 3.23) indicates that groundwater at these locations is 

influenced by watershed hydrology including surface and near-surface processes. The high 

significance of soil moisture (0.22 for Well 4 and 0.34 for Well 5) and streamflow highlights the 

role of coastal surface processes. This is supported by rainfall contributions from nearby stations 

and the influence of tidal lags. 

Located farther inland, groundwater in the areas near wells 2 and 3 is less affected by 

direct tidal or surface interactions. The dominance of terrestrial water storage reflects subsurface 

hydrological processes like groundwater recharge and storage within the watershed, which are 

more critical in areas farther from immediate surface water bodies. The importance of terrestrial 

water storage (scores of 0.59 and 0.32) aligns with their inland position, where recharge and 

subsurface flow govern groundwater dynamics. 
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Area 3 is primarily influenced by streamflow, with the highest importance placed on 

streamflow at station 08078930 in well 7 in Oyster Creek. Average soil moisture, rainfall, and 

tidal influences also play significant roles, with factors such as rainfall for 10 days (0.09) at 

station MOKT2 and streamflow at station 08117210 (0.21) contributing to groundwater elevation 

predictions. The model captures local hydrological processes, including variations in rainfall 

across different stations (BZRT2, MOKT2, LGCT2) and their cumulative effects over various 

time periods. For well #8, streamflow and soil moisture are significant due to potential lateral 

water movement and water retention capacity in the soil. The prominence of these factors 

suggests a linkage to groundwater recharge through these mechanisms. Well #9 is influenced by 

both recent rainfall and longer-term streamflow conditions. This implies a mix of immediate 

rainfall effects and the cumulative impact of water movement through the watershed affecting 

groundwater levels. Well #10 appears to be more influenced by streamflow and cumulative 

rainfall, with a strong dependence on both short-term and longer-term hydrological inputs. Well 

#11's top feature indicates a significant dependency on recent rainfall events, suggesting rapid 

groundwater recharge and vulnerability to immediate hydrological changes. Well #13’s strong 

reliance on cumulative rainfall over 10 days, combined with streamflow, reflects its dependency 

on sustained terrestrial hydrological inputs over time. Well #14 demonstrates a balance between 

cumulative rainfall over 10 days and streamflow influences, with moderate contributions from 

soil moisture and tide levels.  

The varying top features (Figure 3.23 and Figure 3.24) across wells reflect differences in 

their hydrological sensitivities. Wells closer to Gulf or with a higher connectivity to surface 

water sources, like streamflow, show higher significance for immediate water inputs. Conversely, 

wells that integrate longer-term cumulative rainfall and soil moisture suggest a more prolonged 

hydrological response. These variations indicate distinct local hydrological conditions 

influencing groundwater levels, causing the differences in top features. 

 

3.4.5. Depth to groundwater and implications for water table flooding and subsurface 

infrastructure damage 

In area 3, which encompasses wells 2, 3, 4, and 5, depth-to-water (DTW) patterns over 

the observed period reveal significant seasonal variability (Figure 3.25). During late winter to 

early spring (e.g., early 2023), the DTW is generally lower, reflecting a water table closer to the 

ground surface, typically approaching 0 meters or less for Wells 4 and 5, increasing the 

likelihood of flooding. Conversely, in the summer months, the DTW increases, indicating a 

deeper water table farther below the ground surface. Among these wells, well 3 consistently 

exhibits the greatest DTW (deepest water table) throughout the monitoring period, with values 

regularly exceeding 1.5 to 2 meters, particularly during summer and decreasing starting with 

December 2022. This fluctuation highlights periods when the water table near well 3 is least 

likely to experience water table flooding, even during wetter seasons. Wells 4 and 5, located near 

the Gulf of Mexico dune system in the tidal zones, are more prone to flooding during high tide or 
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storm surges, especially during late winter and early spring when the water table is naturally 

higher. 

Figure 3.25. Depth to water continuous measurements in monitoring wells for areas 3 and 4 (see 

Figure 2.1 for geographic locations). The ground surface is the reference point at 0 meters). 

 

In area 4, which includes wells 7, 8, 9, 10, 11, 13, and 14, a similar examination of DTW 

patterns reveals shallow water tables during late winter to early spring and deeper water tables 

during the summer months. Wells 7, 8, and 9 are particularly noteworthy, as their DTW values 

often approach or fall below 0.5 meters in late winter to early spring, indicating a high risk of 

water table flooding during recharge events or storms. Conversely, wells 10, 13, and 14 exhibit 

greater seasonal fluctuations, with DTW values dropping to between 1- and 1.5 meters during 

summer and rising closer to 0.5 meters in late winter and early spring. In particular, well 11 is 

consistently near or above the ground surface, with the highest and most frequent risk of flooding 

of underground infrastructure. The risk of water table flooding is most pronounced for wells 7 

and 8 during late winter and early spring due to their persistently shallow DTW. In contrast, 

wells 10 and 13, despite generally deeper DTW, could experience localized flooding during 

heavy recharge events. 

The susceptibility of septic systems and sewage lines to failure is an additional concern in 

both areas. In area 3, the area near wells 4 and 5, with DTW values below 1 meter during late 

winter and early spring, faces increased risks of water infiltration and contamination, particularly 

during heavy rainfall or tidal surges. The area near Well 3, with consistently deeper DTW values, 

poses the lowest risk for septic systems and sewage lines in this area. In area 4, Wells 7, 8, and 

11 are at the highest risk for compromised septic systems and sewage lines due to their 

persistently shallow DTW values, often nearing or below 0.5 meters during late winter to early 

spring or storm surges. While Wells 14, 9 and 13 demonstrate deeper DTW values, suggesting 

lower susceptibility, localized recharge events during extreme conditions (e.g., late winter 2022-

spring 2023) will likely compromise infrastructure performance. 
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3.5. Discussion 

3.5.1. Submarine groundwater discharge dynamics in barrier islands 

The sediment characterization and hydrological data collected from the barrier islands in 

this study between Quintana Park and the Heritage Preserve provide critical insights into the 

spatial and temporal variability of groundwater behavior and its interaction with nearshore Gulf 

of Mexico waters. This section reveals the complex interplay between subsurface sediment 

makeup of the water table aquifer, groundwater discharge dynamics, and radium isotopes as 

tracers for SGD, shedding light on the processes influencing the shallow/water table aquifer 

systems in the barrier islands. 

Sediment Core Characteristics and Their Implications 

The sediment cores reflect substantial variability in texture, composition, and moisture 

across the study area, highlighting distinct depositional environments shaping the barrier island 

shallow groundwater system. Sediments near the coastline, such as those at wells 7, 8, and 9, are 

dominated by coarser materials like sandy silt and gravel, indicative of higher depositional 

energy. These permeable layers facilitate significant groundwater movement, as evidenced by 

high Darcy velocities and SGD rates in these locations. In contrast, inland cores, such as well 1, 

exhibit fine-grained clay and silt layers with minimal sand content, which contribute to reduced 

permeability and slower groundwater movement. This sediment composition aligns with 

observed DTW patterns, as coastal wells (e.g., wells 7, 8, and 9) consistently exhibit shallow 

water tables during late winter and early spring, increasing risks of water table flooding. 

Conversely, inland wells, such as Well 3 in area 3, maintain deeper DTW values year-round, 

reducing their susceptibility to water table surges. 

Groundwater Dynamics and SGD Variability 

The groundwater elevation data reveal clear spatial patterns and temporal variability, 

strongly influenced by hydrogeological and environmental conditions. Wells in areas 3 and 4 

displayed distinct hydrodynamic behaviors: 

Area 3:  In area 3, which encompasses wells 2, 3, 4, and 5, DTW patterns over the 

observed period reveal significant seasonal variability (Figure 3.25). During late winter to early 

spring (e.g., early 2023), the DTW is generally lower, reflecting a water table closer to the 

ground surface, typically approaching 0 meters or less for Wells 4 and 5, increasing the 

likelihood of flooding. Conversely, in the summer months, the DTW increases, indicating a 

deeper water table farther below the ground surface. Among these wells, well 3 consistently 

exhibits the greatest DTW (deepest water table) throughout the monitoring period, with values 

regularly exceeding 1.5 to 2 meters, particularly during summer and decreasing starting with 

December 2022. This fluctuation highlights periods when the water table near well 3 is least 

likely to experience water table flooding, even during wetter seasons. wells 4 and 5, located near 

the Gulf of Mexico dune system in the tidal zones, are more prone to flooding during high tide or 

storm surges, especially during late winter and early spring when the water table is naturally 

higher. Additionally, wells in area 3, particularly near well 7, exhibited highly dynamic 

responses to seasonal recharge events. High groundwater velocities in winter months (e.g., 187 
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cm/day in January 2023) correspond to peaks in SGD rates, underscoring the influence of rainfall 

and aquifer recharge (as indicated by the streamflow predictive variable in the ML model 

results). Negative gradients recorded in warmer months reflect reduced groundwater flow toward 

the coast from the watershed, which facilitates seawater intrusion, a result of higher tides and 

lower groundwater elevations (Qiu et al., 2012; Saba et al., 2024). The strong correlation 

between streamflow and groundwater levels in area 3 highlights the regional connectivity 

between surface water and aquifer systems. The variability in sediment permeability in this area 

amplifies these dynamics, with sandy layers promoting rapid groundwater flow and discharge. 

Area 4: In area 4, which includes wells 7, 8, 9, 10, 11, 13, and 14, a similar examination 

of DTW patterns reveals shallow water tables during late winter to early spring and deeper water 

tables during the summer months. Wells 7, 8, and 9 are particularly noteworthy, as their DTW 

values often approach or fall below 0.5 meters in late winter to early spring, indicating a high 

risk of water table flooding during recharge events or storms. Conversely, wells 10, 13, and 14 

exhibit greater seasonal fluctuations, with DTW values dropping to between 1- and 1.5-meters 

during summer months and rising closer to 0.5 meters in late winter and early spring. In 

particular, well 11 is consistently near or above the ground surface, with the highest and most 

frequent risk of flooding of underground infrastructure. The risk of water table flooding is most 

pronounced for wells 7 and 8 during late winter and early spring due to their persistently shallow 

DTW, while wells 10 and 13, despite generally deeper DTW, could experience localized 

flooding during heavy recharge events. Groundwater in area 4 was more stable, with lower but 

consistent SGD rates compared to area 3. Sediments in this area are dominated by clay and silt, 

which reduce permeability and buffer against rapid fluctuations. Peaks in groundwater velocity 

(e.g., 8.0 cm/day in January 2023) align with seasonal recharge, although the magnitude of SGD 

rates remains lower due to the less permeable substrate. 

Radium Isotope Insights into SGD Patterns 

This study finds radium isotopes as a powerful tool for tracing SGD, revealing both 

seasonal and spatial variability in groundwater discharge processes along the nearshore Gulf of 

Mexico. For instance, 224Ra activities in porewater were highest in areas with significant 

groundwater-surface water interactions, such as stations P14 and S5, where SGD fluxes were 

amplified by seasonal recharge events. Similarly, 223Ra peaks in porewater (e.g., 1,706 Bq/m³ at 

P2) and surface water (e.g., 661 Bq/m³ at S5) indicate localized sediment-water interactions and 

episodic SGD pulses. The temporal alignment of these peaks with Darcy velocity data confirms 

the role of hydrological events, such as heavy rainfall, local and distant aquifer recharge, and 

regional groundwater inputs nearshore or tidal forcing, in driving SGD dynamics. The long-lived 

isotope 226Ra showed more stable patterns across the study area, with higher activities in 

porewater and groundwater during fall months (e.g., October 2022). which are also supported by 

Darcy’s velocity estimates, which peak in the fall months. These peaks likely reflect sustained 

groundwater discharge from deeper aquifers, where prolonged residence times facilitate radium 

mobilization. The higher activities in region 3 during late summer further underscore the 

importance of seasonal recharge and aquifer flushing in this dynamic area and the potential for 

impacting nearshore water table dynamics.  
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Coastal areas near wells 4 and 5 in area 3 and wells 7, 8, and 11 in area 4 are particularly 

susceptible to the compounded effects of rainfall, tidal forcing, and aquifer recharge. These 

factors amplify groundwater discharge, posing potential risks of nutrient and contaminant 

transport into nearshore Gulf waters, as well as increasing risks to underground infrastructure 

such as septic systems and sewage lines. The high SGD rates in area 3 during colder months and 

the associated radium peaks indicate intense sediment-water interactions and nutrient fluxes, 

which could influence coastal ecosystems and the buried infrastructure. The potential for 

seawater intrusion during warmer months further emphasizes the need for monitoring and 

management strategies to protect freshwater resources and maintain the ecological balance of the 

Gulf of Mexico. The findings significantly advance the understanding of how water table 

patterns influence infrastructure vulnerability and SGD processes along the Texas barrier islands.  

3.5.2. Groundwater levels predictive model 

The analysis of groundwater predictors highlights the complex interplay between 

environmental and hydrological factors driving water table fluctuations in areas 3 and 4. These 

fluctuations are influenced by streamflow, rainfall, soil moisture, terrestrial water storage, and 

tidal dynamics, with each factor contributing uniquely based on the spatial and temporal 

characteristics of the groundwater systems in these areas (MDNR, 2020; Wei et al., 2024). This 

study demonstrates the importance of understanding these drivers to predict groundwater 

behavior and mitigate associated risks effectively. In area 4, terrestrial water storage emerged as 

the most significant predictor of groundwater levels, revealing the critical role of subsurface 

hydrological processes, particularly groundwater recharge and long-term water storage within 

the watershed. Based on the model results in this area, groundwater is largely shielded from the 

direct impacts of tidal and surface hydrology, resulting in more stable water table fluctuations. 

However, it remains vulnerable to prolonged upstream recharge events, where sustained rainfall 

and increases in aquifer storage can lead to gradual yet significant rises in water levels. This 

sensitivity to subsurface dynamics highlights the need for long-term monitoring and management 

strategies tailored to inland aquifers. 

Coastal areas within the study, particularly those near wells 4 and 5 in area 4, exhibited a 

stronger connection to surface hydrological processes, including tidal influences, rainfall, and 

soil moisture. Groundwater in these regions is more susceptible to rapid fluctuations due to the 

proximity to tidal zones and the influence of near-surface hydrology (Wei et al., 2023). High soil 

moisture and lagged tidal effects suggest strong interactions between rainfall-driven recharge and 

tidal cycles. This dynamic interplay makes coastal groundwater systems particularly vulnerable 

during high tides or storm surges when water levels can rise quickly, increasing the risk of 

groundwater flooding and contamination from surface water or seawater intrusion (Allen et al., 

2019). Effective coastal management must account for these interactions to reduce risks 

associated with water table fluctuations. 

In area 3, groundwater near wells 7, 8, and 13 was predominantly influenced by 

streamflow and soil moisture, with rainfall also playing a significant role. For example, 

streamflow at station 08078930 was the most important predictor for groundwater levels in this 

region, illustrating the strong connectivity between streamflow and groundwater recharge (Healy 

and Scanlon, 2010). These groundwater systems displayed dynamic responses to hydrological 

events, such as rapid recharge during heavy rainfall or upstream runoff. However, this dynamic 
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nature also makes them more prone to sharp water table fluctuations, which could exacerbate 

flooding risks during storm events or periods of high streamflow (Bowes et al., 2019; Serafin et 

al., 2019). Additionally, groundwater systems influenced by soil moisture and rainfall, as 

observed in areas near wells 8 and 13, may experience compounding effects of prolonged wet 

conditions, amplifying groundwater level rises. The compounded effects of multiple predictors, 

such as rainfall, upstream recharge, and tidal influences, present significant challenges in 

managing groundwater in these areas. Coastal groundwater systems face heightened risks when 

high tides coincide with heavy rainfall, leading to rapid water table surges (Jang and Chang, 

2022; Lian et al., 2017; Jalili Pirani and Najafi, 2020). Similarly, inland groundwater may 

experience delayed yet substantial rises from sustained upstream recharge (Neri-Flores et al., 

2019), increasing the potential for downstream coastal flooding due to increased hydraulic 

gradients towards the coast (Pietrafesa et al., 2019). These findings underscore the 

interconnected nature of groundwater systems, where localized and regional hydrological 

processes interact to influence water table dynamics in barrier islands. 

3.6. Conclusion/Recommendation 

Conclusions 

The findings from this study provide essential insights into the hydrological dynamics 

that influence the water table along the Texas barrier islands, specifically between Quintana Park 

and the Heritage Preserve (see Figure 2.1). 

1. Sediment Characterization and Groundwater Dynamics: 

• Sediment cores reveal significant heterogeneity across different wells, demonstrating 

variability and permeability in depositional environments. Coastal wells (e.g., wells 7, 8, and 

9) predominantly feature sandy and gravelly textures, facilitating high groundwater flow. In 

contrast, inland wells (e.g., wells 1 and 10) show finer-grained sediments (clay and silt), 

characteristically lower permeability, and slow down groundwater movement.  

• Seasonal variability in groundwater discharge is evident, with higher discharge rates 

occurring during cooler months due to rainfall and aquifer recharge. Conversely, seawater 

intrusion is more pronounced during warmer months, driven by tidal influences and reduced 

groundwater gradients. 

• DTW patterns highlight seasonal trends in water table behavior. In area 3, wells 4 and 5 show 

shallow water tables during late winter and early spring, with DTW values approaching 0 

meters, increasing the likelihood of flooding. Conversely, well 3 exhibits the greatest DTW 

(deepest water table), consistently exceeding 1.5–2 meters, particularly in the summer, which 

reduces its vulnerability to flooding. In area 4, wells 7, 8, and 11 display persistently shallow 

DTW values during late winter and early spring, often approaching or falling below 0.5 

meters, highlighting a high risk of water table flooding and compromised infrastructure. 

2. Submarine Groundwater Discharge (SGD) and Radium Dynamics: 

• Radium isotopes (224Ra, 223Ra, and 226Ra) are effective indicators of groundwater 

discharge, revealing peaks in SGD during periods of increased recharge and aquifer flushing. 

For instance, elevated 224Ra levels in porewater and surface water correlate with enhanced 

SGD, underscoring the role of hydrological events in facilitating groundwater-surface water 

exchanges. 
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• The variability in SGD highlights the interplay between sediment composition, tidal forcing, 

and seasonal recharge. Coastal regions, in particular, are more vulnerable to rapid water table 

fluctuations, which can lead to nutrient and contaminant transport into nearshore ecosystems. 

• Areas with shallow DTW, such as wells 4, 5, 7, and 8, are more prone to flooding during late 

winter and early spring recharge. In these regions, the interplay of tidal influences, 

precipitation, and aquifer recharge amplifies SGD rates and their associated impacts on 

coastal ecosystems and infrastructure. 

3. Groundwater Level Prediction and Key Drivers: 

• Predictive modeling identifies streamflow, rainfall, soil moisture, terrestrial water storage, 

and tidal dynamics as key drivers of water table fluctuations. In area 3, the strong influence 

of streamflow and soil moisture indicates dynamic responses to surface hydrology, while the 

predominance of terrestrial water storage in area 4 reflects subsurface hydrological processes. 

• The dynamic nature of coastal groundwater systems increases the risks of flooding and 

seawater intrusion during high tides or storm surges. The DTW patterns further emphasize 

these risks, with coastal wells in both areas showing shallow water tables and high flooding 

vulnerability during late winter and early spring recharge periods. Inland wells with deeper 

DTW values, such as well 3 in area 3, demonstrate reduced susceptibility to such risks. 

Recommendations 

1. Monitoring and Data Collection: 

• Implement long-term monitoring programs that focus on groundwater levels, tidal cycles, 

and precipitation patterns. Enhanced spatial and temporal data resolution will improve model 

accuracy and help identify critical periods of vulnerability, especially during seasonal 

transitions. 

• Expand radium isotope sampling to more comprehensively track SGD and sediment-water 

interactions under diverse hydrological conditions. 

• Integrate DTW monitoring into existing programs, focusing on wells with high flooding 

vulnerability (e.g., wells 4, 5, 7, 8, and 11). This will provide critical insights into seasonal 

and event-driven risks to water table dynamics and infrastructure. 

2. Coastal and Groundwater Management: 

• Develop adaptive groundwater management strategies to mitigate the risks of seawater 

intrusion and groundwater flooding in coastal areas, especially during high tides and storm 

surges. Targeted interventions like recharge wells or tidal barriers can help stabilize water 

table fluctuations. 

• Emphasize sustainable water use and storage strategies in inland regions, focusing on 

recharge zones to maintain aquifer levels during prolonged dry spells or periods of high 

withdrawal. 

• Prioritize interventions in areas with shallow DTW during high-risk periods (e.g., late winter 

and early spring) to protect septic systems and underground infrastructure from water 

infiltration and contamination. 

3. Model Development and Application: 
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• Incorporate site-specific features, such as sediment composition and aquifer geometry, into 

predictive models to enhance their utility for localized decision-making. Additionally, 

integrating climate projections can help anticipate future hydrological shifts and their impacts 

on groundwater dynamics. 

• Utilize the predictive model to design early-warning systems for water table rises and 

flooding risks, enabling proactive response measures during hydrological extremes. 

• Refine the model to account for the seasonal variability in DTW, particularly in high-risk 

wells, to improve predictions of infrastructure vulnerability and flooding risks. 

4. Ecosystem and Infrastructure Protection: 

• Conduct vulnerability assessments for critical coastal ecosystems and infrastructure exposed 

to fluctuating groundwater levels and SGD-induced nutrient transport. Develop policies to 

minimize ecological impacts while protecting infrastructure integrity.  

• Focus on wells 7, 8, and 11 in area 4 and wells 4 and 5 in area 3 for infrastructure protection, 

as these areas consistently exhibit shallow DTW values during high-risk periods. Strategies 

to mitigate flooding and contamination risks should prioritize these locations. 

• Promote interdisciplinary approaches that combine hydrology, geology, and coastal 

management to tackle the complex challenges groundwater dynamics present in barrier 

island environments. 

These conclusions and recommendations lay the groundwork for sustainable groundwater 

and coastal resource management, enhancing the region’s resilience against environmental and 

hydrological stressors. 
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4. TASK 2: MEASUREMENT OF FECAL INDICATOR BACTERIA 

Prepared by Dipti Anik Dhar, Kiran Kumar Vadde, and Vikram Kapoor, Ph.D. 

4.1. Executive Summary 

The purpose of the study/Task-2 was to apply microbial source tracking (MST) 

approaches to evaluate fecal pollution inputs along the Texas Gulf Coast. Quantitative PCR-

based methods were applied for one general fecal marker (Entero1), two animal-associated 

assays (BacCan and GFD), and one human-associated marker (HF183). For comparison, one 

conventional fecal indicator bacteria (Enterococci) was measured by following a culture-based 

quantification method. Culture-based enterococci was present in all surface water samples in 

high concentration, whereas well and pore water samples showed low detection frequency with 

low concentration. 79% of surface water samples exceed the safe condition for marine 

recreational water. Among 4 qPCR markers, Entero1 showed comparatively higher concentration 

and detection frequency in wells, surface water, and pore water (88% of samples). The sole use 

of these general markers doesn’t give us a clear understanding of the hosts and sources of fecal 

pollution in the Texas Gulf Coast. Among the host-specific markers, the highest level of gull 

markers, GFD, was observed, suggesting a higher percentage of fecal pollution was coming from 

the bird population on the coast. The next predominant marker was BacCan, which can be 

introduced by unrestrained dogs along the coast. Human-derived fecal pollution was detected as 

well though the level and detection of the marker was lowest.  

 

4.2. Background 

Identifying the types of sources that contribute to bacteria in water systems is key when 

developing strategies to reduce bacteria and other pollution levels in surface and groundwater, as 

well as evaluating their potential impact on the environment. In coastal regions where sources 

are not easily known or understood, microbial source tracking (MST) techniques can provide an 

opportunity to analyze water samples in a way that identifies the source of fecal bacteria in the 

sample, from simply identifying whether the source is human or animal to, at times, identifying 

the source down to the species (e.g., cow, dog, deer). The molecular methods used for MST most 

commonly include the analysis of genetic material (e.g., deoxyribonucleic acid [DNA] or 

ribonucleic acid [RNA]) to determine the source (human or animal) that contributed to the fecal 

bacteria observed in the water sample. The underlying assumption of these types of MST 

methods is that there are genetic sequences unique to bacteria from a particular host that can be 

used to identify where the bacteria originated. 

As an integral part of the project, Task 2 sought quantitative data on fecal pollution to 

provide a comprehensive view of the study area. We were looking to identify the potential 

sources of fecal contamination such as (1) humane waste/ runoff through on-site sewage facilities 

(OSSFs), (2) animal waste (domesticated and unrestrained animals regarding recreation), and (3) 

wildlife waste (Seagulls and birds). The potential impact of microbial contamination was 

assessed by conventional fecal indicator bacteria and advanced molecular MST markers. 

Culturable Enterococci, as well as general qPCR assay Entero1 (General Enterococcus) and host-

specific qPCR assays such as HF183 (human), BacCan (Canine), GFD (Gull), were used to 

identify the presence and the abundance of fecal contamination along the Texas Gulf Coast. The 

information from Task 2 will be integrated with other project tasks to develop a comprehensive 
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scenario with detailed geological and environmental factors that influence the sources, 

abundance, and transport of fecal contamination along the Texas Gulf Coast.  

4.3. Methods 

2.3.1. Sampling Sites and Sample Collection 

The present study was conducted at twenty locations along the Texas Gulf Coast in 

Chambers, Brazoria, Galveston, and Matagorda County, Texas, USA. Each location has a 

different combination of well, surface, and pore water samples. Water samples were collected for 

19 months from November 2021 to May 2023 from each site and analyzed for Fecal Indicator 

Bacteria (FIB) and Microbial Source Tracking (MST) markers. Water samples were collected in 

sterile 1 Liter Nalgene bottles (Rochester, NY) as previously mentioned (Hinojosa et al., 2020) 

and transferred to UTSA Laboratory in ice coolers where the water samples were immediately 

processed for Enterolert test and filtration. 

4.3.2. Enterolert Test 

Enterolert Test kit by IDEXX (Westbrook, Maine) was used to enumerate Enterococci 

levels in water samples. 100 ml of water sample was transferred in 250 ml sterile Erlenmeyer 

Flask using sterile serological pippete. The reagent was added to samples and mixed properly by 

shaking the flasks until the powder dissolved completely. The sample mixtures were poured into 

QuantiTray/2000 and sealed with QuantiTray Sealer Plus. The trays were incubated at 41 ± 0.5 

°C for 24 hrs. After incubation, the trays were marked under UV light. The wells with blue 

fluorescence were marked as positive, whereas no fluorescence indicated negative. The number 

of positive large and small wells were counted, and the MPN Table provided with Quanti 

Tray/2000 was referred to obtain the concentration of enterococci in MPN/100ml.  

4.3.3. Filtration and DNA Extraction 

300 ml of each water sample was filtered in duplicate on a vacuum manifold through 

0.45-μm-pore-size, 47 mm diameter polycarbonate membranes (Pall Corporation, Ann Arbor, 

Michigan) and immediately stored at -80°C until DNA extraction. Sterile de-ionized water 

controls were filtered with each sampling event to check for cross-contamination during sample 

processing. Before DNA extraction, the filtered samples were thawed on ice. The genomic DNA 

was extracted using DNeasy PowerLyzer PowerSoil Kit (Qiagen, Hilden, Germany) according to 

the manufacturer’s protocol. Extraction blank was processed with all batches of extraction to 

check carryover contamination. DNA concentration and purity were checked with a Nanodrop 

spectrophotometer (Thermo Scientific, Wilmington, DE). All extracted DNA samples were 

stored in -20°C until further qPCR analysis. 

4.3.4. qPCR analysis 

The presence and distribution of four MST markers (3 TaqMan assays and 1 SYBR 

Green assay) were measured to identify fecal contamination in Texas Gulf Coast waters. 

Extracted DNA from collected coastal water samples were analyzed as the templates (Table 4.1) 

for following MST markers using previously developed qPCR assays; human-associated 

Bacteroidales (HF183), canine-associated Bacteroidales (BacCan), Enterococcus (Entero1), and 

avian-associated fecal markers (GFD). All the qPCR assays were carried out using CFX96 Touch 

Real-Time PCR Detection System (Bio-Rad, Hercules, CA) and all qPCR reactions were 

performed with 20 µL as reaction volume. HF183 and Entero1 were probe-based and each qPCR 
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reaction mixture contained 10 µL of iTaq™ Universal Probes Supermix (Bio-Rad, Hercules, 

CA), 1 µM each of respective forward and reverse primers, 80 nM of the respective probe and 2 

µL of template DNA. Probe-based assay BacCan has same reaction mixture except it contains 

0.4 µM each of respective forward and reverse primers. GFD is a SYBR Green based assay 

where the reaction mixture contains 10 µL of SsoAdvanced Universal SYBR® Green Supermix 

(Bio-Rad, Hercules, CA), 0.1 µL each of forward and reverse primers and 2 µL of template 

DNA. The qPCR reaction was run in duplicate for all DNA templates. The thermal protocol of 

qPCR amplification was performed following an initial denaturation at 95 °C for 2 min, followed 

by 40 cycles of 15 s at 95 °C and 60 s at 60 °C (except Entero1 and GFD, which were performed 

at 54 °C and 57 °C respectively). The GFD assay involved conducting a melting curve analysis, 

where the temperature was increased from 60 °C to 95 °C at a rate of approximately 0.4 °C per 

minute. This analysis was performed after qPCR amplification to confirm the specificity of the 

amplified products. Samples were considered positive if their melting points matched the melting 

point of the qPCR standards within a tolerance of 0.5 °C. 

A standard curve with concentrations spanning the range from 106 to 101 gene copies per 

reaction, with two duplicates was prepared by using serially diluted plasmids standards 

containing the target sequence for each assay purchased from Integrated DNA Technologies 

(IDT, Skokie, IL). The qPCR data were analyzed using Bio-Rad's CFX Manager Software 

(version 3.1). Based on standard curve, the targeted marker copy number per 100 mL of water 

was calculated for all samples. Cross contamination was checked by including extraction blanks 

and three no template controls (NTC) in qPCR each plate. The amplification efficiency for each 

run was calculated as per instrument manufacturer’s instructions (Bio-Rad). The absolute gene 

copies of the markers were determined by calculating the average concentration of duplicate 

reactions and expressing the results as log10 gene copies per 100 mL of water.  

Table 4.1. Primers/probes for the PCR assays used in the study. 

Assay  Primer/probe Sequence (5'-3') Reference 

Human-specific 

Bacteroidales 

(HF183) 

HF183: ATCATGAGTTCACATGTCCG 

BacR287: CTTCCTCTCAGAACCCCTATCC  

BacP234MGB: 6FAM--CTAATGGAACGCATCCC-MGB 

Green et al., 

2014  

Dog Bacteroidales  

(BacCan) 

BacCan- 545f: GGAGCGCAGACGGGTTTT 

BacUni-690r: CAATCGGAGTTCTTCGTGATATCTA  

BacUni-656p: 6-FAM-TGGTGTAGCGGTGAAA-TAMRA-

MGB 

Kildare et al., 

2007  

 

Avian-associated 

marker  

(GFD) 

F: TCGGCTGAGCACTCTAGGG 

R: GCGTCTCTTTGTACATCCCA 

Green et al., 

2012  

 

General Enterococcus 

(Entero1) 

ECST748F: AGAAATTCCAAACGAACTTG 

ENC854R: CAGTGCTCTACCTCCATCATT 

GPL813TQ: 6FAM-

TGGTTCTCTCCGAAATAGCTTTAGGGCTA-TAMRA 

Ludwig &  

Schleifer, 2000  

4.3.5. Data Analysis 

All bacteria data was transformed into log10 scale to generate normally distributed data 

sets and reduce the influence of broad range of observation. Cultured enterococci enumerated 

with IDEXX has Limit of Detection (LOD) as <1 MPN/100ml and above detection limit as 

>2419.6 MPN/100ml which have been reported as 0 and 2419.6 MPN/100ml respectively. We 
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maintained Limit of Quantification (LOQ) as 10 copies/100ml per qPCR reaction for all four 

MST markers. The values below 10 copies/100ml were reported as no detection and were 

assigned a value of one before log transformation. Statistical analyses were performed in R-

studio (version 2024.04.1) software. Based on non-normality of datasets, a Kruskal-Wallis test 

was run to determine if differences between marker concentrations among sampling sites were 

statistically significant. Analyses were considered significant at alpha level of 0.05 (95% of 

confidence level). Boxplots were constructed in GraphPad Prism (Version 10.3.0(507)). Lower 

and upper box boundaries indicate the first and third quartiles. The median is given as the 

horizontal black line within the box.  Upper and lower whiskers represent the maximum and 

minimum value respectively.  

4.3.6. Quality Assurance/Quality Control 

All environmental samples were collected and handled according to procedures outlined 

in the EPA field sample collection protocol - EPA Method 1669 (USEPA, 1996), including 

labeling of containers and logging of sample information on field logs. All samples were 

transported on ice and were accepted in good condition, according to protocol. Samples were 

logged in upon arrival at the laboratory, and a unique sample number was given for identification 

purposes. The following quality control activities were conducted during the PCR laboratory 

analysis: filtration, positive controls, no template controls, method accuracy, and specificity. 

 

4.4. Results and Discussion 

4.4.1. Performance of qPCR assays 

Each qPCR plate contained a standard curve in duplicate generated from a serial dilution 

of known target copies per reaction, which were used to determine the amplification efficiencies 

and linear ranges of the qPCR assays. The linear range of quantification for all qPCR assays was 

between 101 and 106 copies per reaction. The qPCR amplification efficiencies for all the assays 

ranged from 85.8 to 114.9 %, and the R2 values were greater than 0.941 (Table 4.2). DNA 

extraction controls and no template controls (three per qPCR plate) were run to check cross-

contamination, and the absence of contamination in the qPCR experiments was confirmed. 

 

Table 4.2. Average standard curve qPCR amplification efficiencies and R2 values obtained 

through BioRad CFX Manager 3.1 software. 

Assay Amplification Efficiency (%) R2 

 
Human-associated Bacteroidales (HF183)  

 

98.60 0.989 

Dog-associated Bacteroidales (BacCan)  

 

94.78 0.979 

Avian-associated marker (GFD) 99.79 0.984 

General Enterococcus (Entero1)  

 

100.4 0.985 

 

4.4.2. Detection of Culture-based Enterococci 

Enterococci was enumerated from all type of water samples (207 well water samples, 335 

surface water, and 226 pore water samples) collected from December 2021 to May 2023. Table 
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4.3, Table 4.4, and Table 4.5 show the spatial detection frequency of enterococci and Table 4.6, 

Table 4.7, and Table 4.8 show the temporal detection frequency of enterococci with similar 

categories published in the beach monitoring website Texas Beach Watch managed by Texas 

General Land Office (TGLO). The website has color coded Beach Advisory levels; Low, 

Medium and High with the criteria of less than 35 MPN/100ml, 35 to 104 MPN/ 100mL, and 

more than 104 MPN/100 mL, respectively. High Level denotes that the concentration of 

enterococci exceeds the EPA recreational water quality standard. The samples from well, surface 

and pore water had considerably different detection patterns throughout the study. Enterococci 

was detected in all surface water samples with high concentration whereas well and pore samples 

had low concentration with low detection frequency. 

Table 4.3. Spatial Detection frequency of Enterococci enumerated by IDEXX Enterolert kit in 

well Samples. 
Sites W1 W2 W3 W4 W5 W7 W8 W9 W10 W11 W13 W14 

No. of Samples 17 15 18 18 18 18 13 18 18 18 18 18 

Beach 

Advisory 

Level 

Criteria 

(MPN/ 

100mL) 

Percentage of positive samples fall in the criteria 

Low <35 94 6 100 94 100 6 54 78 94 83 94 72 

Medium 35 to 104 6 27 0 6 0 44 8 22 6 0 0 17 

High >104 0 67 0 0 0 50 38 0 0 17 6 11 

 

Table 4.4. Spatial Detection frequency of Enterococci enumerated by IDEXX Enterolert in 

Surface Samples. 
Sites S1 S2 S4 S5 S6 S6B S8 S9 S10 S11 

No. of Samples 17 18 18 18 17 17 18 18 18 18 

Beach 

Advisory 

Level 

Criteria 

(MPN/ 

100mL) 

Percentage of positive samples fall in the criteria 

Low <35 29 0 6 6 0 6 0 6 0 0 

Medium 35 to 104 6 33 28 28 53 41 28 28 17 17 

High >104 65 67 66 66 47 53 72 66 83 83 

 

Sites S12 S12B S14 S15 S16 S17 S18 S19 S20  

No. of Samples 18 16 18 18 18 18 17 17 18  

Beach 

Advisory 

Level 

Criteria 

(MPN/ 

100mL) 

Percentage of positive samples fall in the criteria 

Low <35 0 0 0 0 0 0 0 0 0  

Medium 35 to 104 0 6 17 6 6 0 6 24 11  

High >104 100 94 87 94 94 100 94 76 89  

 

Table 4.5. Spatial Detection frequency of Enterococci enumerated by IDEXX Enterolert in Pore 

Samples. 
Sites P2 P4 P5 PWB5 P8 P9 P10 P11 

No. of Samples 18 18 18 9 18 18 18 18 

Beach 

Advisory 

Level 

Criteria 

(MPN/ 

100mL) 

Percentage of positive samples fall in the criteria 
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Low <35 78 61 72 56 50 67 67 56 

Medium 35 to 104 16 33 28 44 44 33 28 39 

High >104 6 6 0 0 6 0 5 5 

 

Sites P14 P15 P16 P18 PWB18 P19 PWB19  

No. of Samples 18 11 14 17 9 15 7  

Beach 

Advisory 

Level 

Criteria 

(MPN/ 

100mL) 

Percentage of positive samples fall in the criteria 

Low <35 28 73 50 65 67 74 72  

Medium 35 to 104 61 18 29 23 33 13 14  

High >104 11 9 21 12 0 13 14  

 

Less contamination was observed with IDEXX Enterolert Kit in well water samples than 

surface and pore water samples throughout the study. The concentration of enterococci ranged 

from below detection limit (< 1 MPN/100 mL) to above detection limit (> 2419.6 MPN/100 

mL). Statistically significant difference in enterococci concentration across the study sites was 

found (Kruskal-Wallis test; p <0.05).  Most of the samples (154 out of 207) fell into Low level of 

enterococci from different well sites. 48 out of 207 well water samples (23%) showed no 

detection or < 1 MPN/100 mL of enterococci. The samples from W1, W3, W4, W5, W9, and 

W10 fell into low and medium level which indicates these sites never exceeded the recreational 

water quality throughout the study. The concentration of enterococci in these sites ranged from < 

1 MPN/100 mL to 65 MPN/100 mL.  W3 and W5 contained 100% of the samples in low level 

for 18 months. High percentage of detection in High level or above recreational water quality 

was observed in W2, W7, and W8 (67%, 50%, and 38% respectively). Similarly, W11, W13, and 

W14 showed low percentage of frequency in High level of enterococci (17%, 6%, and 11% 

respectively). Out of 7 well samples in Brazoria County, all well sites contained enterococci 

concentration in High level except W9 and W10 indicating the wells encountered fecal 

contamination. Well sites in Galveston turned out less contaminates except W2 which has highest 

detection frequency in High Level. Chambers county has only one well site and it is 

comparatively less contaminated. 

100% of samples collected from Surface water sites were tested positive for cultured 

enterococci (Table 3(b)). There was statistically significant difference in enterococci 

concentration across the study sites for surface water samples (Kruskal-Wallis test; p < 0.05). 

Unlike well and pore water samples, surface water samples showed higher concentration of 

enterococci in all sites throughout the study period ranging from 11.8 MPN/100 mL to above 

detection limit (> 2419.6 MPN/100 mL).  Only 21% of samples (71 out of 335 surface samples) 

met the threshold for marine recreational water. Elevated detection frequency (47% to 100%) 

was observed for High criteria of Beach Advisory Level indicating regular heavy fecal 

contamination throughout the study period. Site S12 and S17 were the most contaminated sites 

as they did not meet the criteria over 18 months of sampling event. S12B, S15, S16, and S18 

exhibited high fecal contamination due to showing only one day of safe condition for swimming 

in Medium Criteria. Overall, the surface water sites in Chambers County, Galveston County and 

Brazoria County showed lower percentage of detection frequency in High criteria of Beach 

Advisory Level comparing with Matagorda County and the sites near Quintana Park in Brazoria 

County.  
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Enterococci was detected in 98% of the samples from pore water sites ranging from 

below detection limit (< 1 MPN/100 mL) to above detection limit (> 2419.6 MPN/100 mL). 

There was no statistically significant difference among pore water sites (Kruskal-Wallis test; p > 

0.05).  Unlike well water samples, only 2% of pore water samples showed no detection or below 

detection limit throughout the study period. For all sites, higher detection frequency was 

observed in Low (28 % to 78%) and Medium (13% to 61%) level of contamination The samples 

from P5, PWB5, P9, and PWB18 did not exceed the maximum acceptable level for enterococci 

in recreational water with a concentration ranging from < 1 MPN/100 mL to 100.6 MPN/100 

mL. Only 1 sample throughout the study period exceeded the maximum allowable level in site 

P2, P4, P8, P10, P11, P15, and PWB19B. P14, P16, P18, and P19 had more than one sample 

which did not meet the acceptable water quality for recreational marine water.  

Table 4.6. Temporal Detection frequency of Enterococci enumerated by IDEXX Enterolert in well 

water Samples. 

Sampling 
Dec 

21 

Jan 

22 

Feb 

22 

Mar 

22 

Apr 

22 

May 

22 

Jun 

22 

Jul 

22 

Aug 

22 

No. of Samples 12 12 12 12 12 12 12 12 12 

Beach Advisory 

Level 

Criteria 

(MPN/ 

100mL) 

Percentage of positive samples fall in the criteria 

Low <35 50 59 67 75 75 75 92 83 75 

Medium 35 to 104 17 8 8 0 8 8 8 17 17 

High >104 33 33 25 25 17 17 0 0 8 

 

Sampling 
Sep 

22 

Oct 

22 

Nov 

22 

Dec 

22 

Jan 

23 

Feb 

23 

Mar 

22 

Apr 

22 

May 

22 

No. of Samples 12 12 12 10 10 10 11 12 10 

Beach Advisory 

Level 

Criteria 

(MPN/ 

100mL) 

Percentage of positive samples fall in the criteria 

Low <35 83 67 67 80 90 90 73 67 80 

Medium 35 to 104 17 25 0 10 10 10 9 17 10 

High >104 0 8 33 10 0 0 18 17 10 

 

Table 4.7. Temporal Detection frequency of Enterococci enumerated by IDEXX Enterolert in 

surface water Samples. 

Sampling 
Dec 

21 

Jan 

22 

Feb 

22 

Mar 

22 

Apr 

22 

May 

22 

Jun 

22 

Jul 

22 

Aug 

22 

No. of Samples 17 19 19 19 19 18 19 19 18 

Beach Advisory 

Level 

Criteria 

(MPN/ 

100mL) 

Percentage of positive samples fall in the criteria 

Low <35 0 0 5 5 0 0 0 0 6 

Medium 35 to 104 18 26 32 26 26 11 11 0 22 

High >104 82 74 63 69 74 89 89 100 72 

 

Sampling 
Sep 

22 

Oct 

22 

Nov 

22 

Dec 

22 

Jan 

23 

Feb 

23 

Mar 

22 

Apr 

22 

May 

22 

No. of Samples 19 19 18 19 19 19 18 19 18 
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Beach Advisory 

Level 

Criteria 

(MPN/ 

100mL) 

Percentage of positive samples fall in the criteria 

Low <35 11 0 0 5 0 5 6 5 0 

Medium 35 to 104 21 0 28 32 16 32 22 11 0 

High >104 68 100 72 63 84 63 72 84 100 

 

Table 4.8. Temporal Detection frequency of Enterococci enumerated by IDEXX Enterolert in 

pore water Samples. 

Sampling 
Dec 

21 

Jan 

22 

Feb 

22 

Mar 

22 

Apr 

22 

May 

22 

Jun 

22 

Jul 

22 

Aug 

22 

No. of Samples 12 13 14 15 11 10 12 12 12 

Beach Advisory 

Level 

Criteria 

(MPN/ 

100mL) 

Percentage of positive samples fall in the criteria 

Low <35 84 77 57 73 55 20 83 42 66 

Medium 35 to 104 8 23 29 27 45 70 17 33 17 

High >104 8 0 14 0 0 10 0 25 17 

 

Sampling 
Sep 

22 

Oct 

22 

Nov 

22 

Dec 

22 

Jan 

23 

Feb 

23 

Mar 

22 

Apr 

22 

May 

22 

No. of Samples 13 14 10 9 15 15 12 13 14 

Beach Advisory 

Level 

Criteria 

(MPN/ 

100mL) 

Percentage of positive samples fall in the criteria 

Low <35 54 57 50 56 60 40 75 85 64 

Medium 35 to 104 38 29 50 44 27 53 25 15 29 

High >104 8 14 0 0 13 7 0 0 7 

 

Detection frequency in well, surface, and pore water samples was considered for 

temporal pattern in this study throughout the study period (Tables 4a, 4b, 4c). There was no 

statistically difference of the concentration of Enterococci in 18 months of well samples water 

(Kruskal-Wallis test; p > 0.05).  All well samples contained enterococci under the threshold value 

in June 2022, July 2022, September 2022, April 2022, February 2023. The other 13 months of 

samples contained varied frequency in High Criteria of Enterococci (8% to 33%). Surface water 

sites showed statistically significant difference within 18 months of samples (Kruskal-Wallis test; 

p < 0.05).   Elevated detection frequency was observed in High criteria (63% to 100%) in every 

month throughout the study period indicating all the sites had unsafe level of enterococci 

concentration. In July 2022, October 2022, and May 2022, 100% samples from 19 surface water 

sites contained enterococci concentration higher than the maximum allowable level for 

recreational marine water. There was statistically significant difference in enterococci 

concentration across 18 months of pore water samples (Kruskal-Wallis test; p < 0.05). The higher 

percentage of detection frequency in Low and Medium criteria for pore water samples was an 

indication of less fecal contamination throughout the study period. Safe level of enterococci was 

detected in all pore water samples from the month January 2022, March 2022, April 2022, June 

2022, November 2022, December 2022, March 2023, and April 2023.  
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4.4.3. Detection of Fecal Contamination using MST Markers 

From November 2021 to May 2023, 807 water samples from different well, surface and 

pore water sites were analyzed for four MST markers to characterize fecal pollution sources and 

trends along Texas Gulf coast. Among four MST markers, enterococci were found most 

frequently (89% of samples) using Entero1 assay. Among host-specific markers, human feces 

associated marker HF183 was detected in less than 5% of samples, whereas avian marker GFD 

was found in majority of the samples (88% of samples). 23% samples were positive for canine 

fecal marker BacCan indicating that the study area received fecal pollution from dog sources 

throughout the study period. Detailed findings for each marker are presented and discussed 

below.  

4.4.3.1. Detection of general fecal marker 

Enterococci showed the highest concentration among all the qPCR markers across the 

sampling sites (Figure 4.1). Entero1 was detected in 206 out of 219 well water samples collected 

from 12 well water sites. The concentration of enterococci using the marker Entero1 in well 

samples was statistically different (Kruskal-Wallis test; p < 0.05) with a range of 2.27 Log10 

Copies/100 ml to 7.26 Log10 Copies/ 100 ml. The mean value fluctuated from 1.7 Log10 

Copies/100 ml to 4.93 Log10 Copies/100 ml. 100% samples were positive for the marker in W3, 

W4, W5, W7, W8, W10, W11 and W13. Several samples from W1 did not show the presence of 

Entero1.  

There was statistically significant difference in the concentration of Entero1 detected in 

surface water in different surface water sites along Texas Gulf Coast (Kruskal-Wallis test; p < 

0.05). Figure 4.2 shows the concentration of Entero1 with 98% presence in surface water 

samples (345 out of 351 surface water samples). Mean value of Entero1 varied in a close range 

from 3.32 Log10 Copies/100 ml to 4.47 Log10 Copies/100 ml. The minimum and maximum 

positive value for Entero1 were 2.23 Log10 Copies/100 ml and 6.02 C both collected from S8.  

The samples yielded significantly different amplification for Entero1 across the pore 

water sites (Kruskal-Wallis test; p < 0.05). 167 out of 237 pore water samples (70%) were 

positive for Entero1 throughout the study. The abundance of Entero1 varied from 2.23 Log10 

Copies/100 ml to 6.99 Log10 Copies/100 ml. P2, P14, and P16 frequently showed high 

abundance of Entero1 with more than 80% detection frequency. 
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Figure 4.1. Spatial variation of enterococci concentration using MST marker Entero1 

throughout the study period. 

 

The temporal distribution of Entero1 in well, surface water, and pore water is 

presented in Figure 4.2.  A statistically significant difference was found throughout 19 

months of the study period while analyzing well water samples, surface water samples, and 

pore water samples separately (Kruskal-Wallis test; p < 0.05). The concentration of Entero1 

found higher in summertime while they are lower in winter and spring time. The highest 
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mean abundance of Entero1 (5.05 Log10 Copies/100 ml) in well samples was found in July 

2022 whereas the lowest mean (2.72 Log10 Copies/100 ml) occurred in February 2023. The 

lowest and highest average value of Entero1 in surface water were 3.00 and 4.96 occurred in 

January 2023 and July 2022 respectively. In pore water, lowest mean (0.81 Log10 

Copies/100 ml) of Entero1 concentration occurred in March 2023 and highest mean (3.99 

Log10 Copies/100 ml) was detected in April 2022.  

Overall, high detection frequency of general fecal marker Entero1 indicates the 

presence of fecal contamination at all types of sites along Texas Gulf Coast. Enterococci has 

been reported to survive and grow outside of human and animal gastrointestinal system in a 

wide variety of environments. Therefore, presence of Entero1 doesn’t give us sufficient 

information of specific source of fecal contamination. 
 

Well Sites 

 

 

Surface Water Sites 
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4.4.3.2. Detection of human-associated marker 

Human waste can be introduced in various aquatic environments from old and failing on-

site sewage systems (OSSS), stormwater runoff, public portable washrooms adjacent to beach 

access, boat and fishing ramps, RV camp sides. Among three host-associated MST markers, 

human-associated marker HF183 was detected least frequently across Texas Gulf Coast 

throughout the study. 34 out of 807 water samples (4%) collected from collected from well, 

surface, and pore water sites contained HF183. The spatial and temporal distribution of HF183 is 

shown in Figure 4.3 and Figure 4.4. The abundance of HF183 was not statistically significant in 

well, surface water, and pore waters (Kruskal-Wallis test; p > 0.05). The marker HF183 was 

more prevalent in surface water (7%) than well (3%) and pore (1%) water. The concentration 

varied from 2.24 Log10 Copies/100 ml to 3.32 Log10 Copies/100 ml in well water. W1, W3, 

W4, W5, W7, W10, and W11 never showed any detection of HF183. For surface water, S10 

showed highest detection frequency (21%) for HF183. The concentration of HF183 ranged from 

2.38 Log10 Copies/100 ml to 4.84 Log10 Copies/100 ml in site S8. Surface water site S5, S6B, 

S18, S19, and S20 never displayed the presence of HF183. All surface water sites from Brazoria 

were positive for human associated marker. HF183 was detected only once in each site of P2 and 

PWB5 and the mean value of the concentration was 2.49 Log10 Copies/100 ml. No detection in 

other pore water sites indicated no human fecal contamination in pore water.  

No month particularly showed statistically significant difference in abundance of HF183 

for well water and pore water samples (Kruskal-Wallis test; p > 0.05). 19 months sampling 

exhibited significant difference in concentration of HF183 for surface water (Kruskal-Wallis test; 

p < 0.05). In well samples, HF183 was detected mostly during winter and spring/early spring 

which could be contributed by septic systems of rental houses near Gulf Coast during vacation 

periods. Abundance of HF183 in surface water did not show any significant pattern. All six 

months from December 2022 to May 2023 could be a concerning event. Higher detection 

frequency in surface water was found in July 2022, April and May 2023. Overall, majority of the 

Porewater Sites 

 
Figure 4.2. Temporal variation of enterococci concentration using MST marker Entero1 across 

the study sites. 
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samples exhibited no detection of human-specific markers suggesting human fecal pollution was 

not severe compared to other hosts. 

 

Figure 4.3. Spatial variation of Human fecal contamination using MST marker HF183 

throughout the study period. 
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Figure 4.4. Temporal variation of Human fecal contamination using MST marker HF183 

throughout the study period. 

Porewater Sites 

Surface Water Sites 

Well Sites 
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4.4.3.3. Detection of canine-associated marker 

Similar to other markers, Canine fecal marker BacCan was detected for frequently in 

surface water (40% of samples) than well (19%) and pore water (3%) (Figure 4.5). The variation 

of the concentration of BacCan was statistically significant in well water samples (Kruskal-

Wallis test; p < 0.05) with a range from 2.30 Log10 Copies/100 ml and 5.19 Log10 Copies/100 

ml. Most contaminated wells were W2, W3, and W4 located in Galveston County. W2 

encountered consistent dog pollution with a mean concentration of 3.85 Log10 Copies/100 ml. 

W1, W7, W10, W11, W13 were most clean well sites with no detection of BacCan throughout 

the study. 

All surface water sites received dog pollution in various detection frequency (11% to 

89%) at some point throughout the study period. Statistically significant difference was found in 

the level of BacCan marker in surface water sites (Kruskal-Wallis test; p < 0.05). The 

concertation of BacCan varied from 2.22 Log10 Copies/100 ml to 5.37 Log10 Copies/100 ml. 

The most frequent dog fecal contamination occurred in S2 with a mean value of 2.71 Log10 

Copies/100 ml. Considerable contamination was detected in S2, S4, S5, S10, and S17 with more 

than 50% detection of BacCan marker. 

No significant difference in the level of BacCan marker was yielded in pore water 

samples (Kruskal-Wallis test; p > 0.05). The marker was detected only once in P2, P4, P5, 

PWB5, P8, and PWB19 with a range from 2.25 Log10 Copies/100 ml to 4.22 Log10 Copies/100 

ml.  

Unlike well and pore water samples, the concertation of BacCan in surface water varied 

significantly over 19 months of sampling (Kruskal-Wallis test; p < 0.05). Relatively high 

concentration for BacCan was observed in Spring and winter time in all type of sites (Figure 

4.6). Surface water encountered dog contamination more frequently in Winter months. In Texas, 

the outside temperature is more favorable during these times. Pet owners might spend 

recreational time at rental houses and at the beach. High levels of dog fecal waste in Texas Gulf 

Coast could be associated with large number of unrestrained dog population visiting and 

engaging seasonal recreational activities. 
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Figure 4.5. Spatial variation of Canine fecal contamination using MST marker BacCan 

throughout the study period. 
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Figure 4.6. Temporal variation of Canine fecal contamination using MST marker BacCan 

across study sites. 
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4.4.4.4. Detection of avian-associated marker 

Among the host-specific fecal markers, GFD was consistently present in all types of sites 

(Figure 4.7). Texas is in the migratory route for various species of birds flying during fall/winter 

seasons, especially in coastal areas due to humid weather. Texas is a residence for all season 

birds; therefore, the GFD marker was detected frequently throughout the study. However, the 

MST marker GFD is designed for detecting Helicobacter sp., which is present in a wide range of 

avian species, including seagulls, waterfowls, and other birds. The concertation of the GFD 

marker was observed to be relatively higher in surface water than in well and pore water, 

indicating gull feces as a potential source of concern in the Texas Gulf Coast (Figure 4.7). 

Temporal concentration varied in a statistically significant manner (Kruskal-Wallis test; p < 0.05) 

in all types of samples for 19th-month sampling (Figure 4.8).   

The concentration of GFD varied significantly across different well sites (Kruskal-Wallis 

test; p < 0.05) with a range of concentration from 2.25 Log10 Copies/100 ml to 5.76 Log10 

Copies/100 ml. The mean concentration of the GFD marker ranged from 0.66 Log10 Copies/100 

ml to 3.77 Log10 Copies/100 ml. W2, W4, W5, W7, W8, and W10 were the most contaminants 

well sites by gull fecal marker showing 100% detection of GFD. 

No significant variation in GFD abundance was found in surface water samples (Kruskal-

Wallis test; p > 0.05). High detection frequency was observed in all surface water sites (83% to 

100%). The concentration varied from 2.39 Log10 Copies/100 ml to 5.49 Log10 Copies/100 ml 

in surface water samples. Except for S1, the concentration of the GFD marker was consistently 

prevalent, with a mean concentration of 3.99 Log10 Copies/100 ml to 4.44 Log10 Copies/100 

ml. 

Statistically significant variation was not observed in pore water samples for the GFD 

marker (Kruskal-Wallis test; p > 0.05). The lowest and highest concentrations of GFD were 

found both in P18 (2.23 Log10 Copies/100 ml and 5.09 Log10 Copies/100 ml). The mean 

concentration of GFD in pore water varied from 1.91 Log10 Copies/100 ml to 3.16 Log10 

Copies/100 ml. 
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Figure 4.7. Spatial variation of Gull fecal contamination using MST marker GFD throughout 

the study period. 
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Figure 4.8. Temporal variation of Gull fecal contamination using MST marker GFD across 

study sites. 
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4.5. Conclusion/Recommendation 

The following conclusions have been drawn from this study for the study area:  

• The general marker (enterococci) exhibited highest levels and a similar spatial 

distribution pattern across the sampling sites. Among the host-associated markers, low 

levels were observed for the human-associated markers and the highest levels for GFD, 

suggesting a higher percentage of fecal pollution to be coming from the large bird 

populations in the study area.  

• The predominant sources of fecal contamination identified in the study area were, in 

ranked decreasing order of presence: avian including gull, ducks etc., dog and human-

derived. 

• The concentrations of the GFD genetic marker were relatively higher at all surface water 

sites and well water sites suggesting that bird fecal pollution is a major source of concern 

for Texas Gulf coast. The canine marker was consistently higher in the surface water sites 

as compared to well water sites. 

• BacCan exhibited higher concentrations during the end of fall and winter and were all 

lowest during the summer months.  

• Data from this study have established a baseline for fecal pollution sources in the study 

area and can be used for the recommendation and implementation of best management 

practices that can accurately and cost effectively prevent, control, and remediate fecal 

pollution events and maintain water quality.  

 

Recommendations for the Texas GLO include: 

• Secure resources/funding to implement necessary improvements in management 

programs and enforcement mechanisms that will mitigate the public health risk by 

reducing animal and human-derived sources and other readily controllable sources of 

fecal contamination, including:  

▪ Domestic Pet Waste - Education and outreach to homeowners regarding proper 

disposal of domestic pet waste. 

▪ Bird Fecal Waste – Identify birds that are polluting the water and develop bird 

relocation efforts to reduce hazards associated with large bird populations.  

▪ On-Site Septic Systems  

• Ongoing homeowner education regarding septic system maintenance and 

homeowner inspections of septic systems. 

• Investigate, identify, and repair or replace problematic septic systems in the 

contributing zone. 

• Improve storm water management programs, including the promotion of Low Impact 

Development (LID) such as the reduction of effective impervious surfaces, dispersion of 

storm water runoff to vegetated areas, and Best Management Practices that are 

appropriate to the site-specific conditions.  

• Use the results from this study to evaluate current wastewater infrastructure and on-site 

septic system management programs and water quality monitoring plans in the recharge 

and contributing zones. Re-examine implementation strategies and modify if necessary to 

achieve long-term water quality objectives.  

• Implement a change in drainage architecture which supports a more diverse biological 

habitat around the creeks that could produce a reduction in downstream bacterial input. 

For example, pouring of concrete channels around the creek to avoid runoff from directly 
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entering the stream. 

• Continue outreach (including dissemination of related study results) to the public about 

nonpoint source pollutant sources and steps that can be taken to mitigate those sources 

that are human-derived and controllable through improved management programs and 

enforcement mechanisms that will benefit ecosystem and public health.  

• Continue emphasis on improving MST methodologies, including efforts that will 

encourage accessibility and use of these tools in a streamlined and cost-effective manner. 
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5. TASK 3: QUANTIFICATION AND SOURCE TRACKING OF NUTRIENT 

INPUTS 

Prepared by: Erin Taylor and J. David Felix, Ph.D. 

5.1. Executive Summary 

This study examines nitrogen loading to coastal waters from Matagorda to Galveston 

Island, utilizing stable isotope techniques to identify the sources and processes driving nitrogen 

contamination. Over an 18-month period (November 2021 to April 2023), monthly water 

samples were collected to measure nitrate, ammonium, and dissolved organic nitrogen 

concentrations, along with their isotopic composition, in surface, pore, and groundwater. Nitrate 

concentrations in surface (3.4 ± 5.2 µM) and porewaters (4.3 ± 7.1 µM) were consistent with 

typical environmental conditions reported in previous studies. In comparison, nitrate 

concentrations in groundwater (34.4 ± 113.5 µM) were notably higher than expected background 

levels (11 µM). Isotope mixing models indicated that nitrate in all water matrices was 

predominantly sourced from septic/sewage systems, with contributions exceeding 50% in all 

cases. During the summer, there was a rise in nitrate contributions from septic and sewage 

systems, likely reflecting increased tourist activity. Interestingly contributions from combined 

dog/gull waste increased in winter, aligning with avian migratory patterns. Dual isotope trends 

revealed seasonal changes in nitrate processing across sample matrices. Surface waters exhibited 

competition between denitrification, assimilation, and nitrification, while porewaters primarily 

reflected denitrification and dissimilatory nitrate reduction to ammonia (DNRA) in most seasons, 

with denitrification dominant in summer. Groundwater with high nitrate concentrations showed 

competition between anammox, denitrification, and nitrification, while groundwater with low 

nitrate concentrations predominantly experienced denitrification and nitrification. 

Surface water NH4
+ concentrations averaged 4.9 ± 9.4 µM, which are higher than typical 

open ocean levels, with seasonal trends showing a decrease in summer due to assimilation 

processes. In porewater, NH4
+ was the dominant nitrogen species, with an average concentration 

of 27.7 ± 40.6 µM, exhibiting seasonal peaks in spring and summer, likely driven by increased 

microbial remineralization and DNRA. Groundwater in the region showed unusually high NH4
+ 

concentrations, averaging 158.9 ± 345.2 µM, which likely indicates a direct NH4
+ source. 

Groundwater NH4
+ concentrations were categorized into three tiers based on concentration 

levels: the highest tier (wells 5 and 7) had concentrations of 507.8 ± 335.8 µM; the middle tier 

(wells 3, 10, and 11) had concentrations of 118.4 ± 108.1 µM; and the lowest tier (wells 1, 2, 4, 

8, 9, 13, and 14) had concentrations of 41.7 ± 123.4 µM. NH4
+ concentrations were inversely 

related to δ15N-NH4
+ values of: 6.8 ± 5.1‰ for the highest tier, 10.5 ± 8.8‰ for the middle tier, 

and 15.0 ± 8.1‰ for the lowest tier. Wastewater effluent (3.9 ± 2.8‰) had a δ15N-NH4
+ value 

similar to the highest tier, suggesting direct septic source contamination with minimal processing 

in high-concentration wells. Microbial processing of NH4
+ preferentially uses the lighter 14N 

isotope, leading to an increase in the remaining δ15N-NH4
+, which explains the higher δ15N 

values in lower concentration wells that have undergone more processing before reaching the 

water table. 

Surface water had an average DON concentration of 7 ± 5 µM, with higher 

concentrations observed in fall (10 ± 4 µM) and summer (9 ± 4 µM), likely due to increased 

organic matter input and microbial activity. A significant correlation between inverse DON 

concentrations and δ15N-DON values indicated source mixing, leading to higher DON levels in 

summer and fall, potentially from marine and wastewater-derived DON, with a minimal yet 
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greater contribution from wastewater in summer compared to fall. Porewater DON 

concentrations averaged 7 ± 8 µM, with no significant seasonal variations. Correlations between 

DON concentrations and δ15N-NH4
+ supported NH4

+ production via remineralization in the 

sediments. Groundwater DON concentrations averaged 21 ± 58 µM, with higher concentrations 

(48 ± 123 µM) observed in wells 5 and 7, located near septic systems, suggesting potential 

contributions from septic effluent. However, the low δ15N-DON values in groundwater imply 

additional processing or source contributions, such as soil-derived organic matter. 

Rising water tables reduce the amount of unsaturated soil available for wastewater 

filtration, thereby diminishing the effectiveness of on-site sewage facilities OSSFs. This trend is 

supported by findings from this study, where [NO3
-] was positively (though insignificant) 

correlated with depth to water (DTW), δ15N-NO3
- was positively correlated with DTW, [NH4

+] 

was negatively correlated (p = 0.0026) with DTW, and δ15N-NH4
+ was positively correlated with 

DTW. Septic discharge typically contains 70-90% NH4
+, and when there is more space between 

the septic discharge field and the water table (i.e., greater DTW), there is more opportunity for 

NH4
+ to be nitrified to NO3

-, which can then be denitrified to harmless N2(g). In this scenario, 

NH4
+ is processed before it reaches the water table, and any residual NO3

- that is not denitrified 

to N2 would enter the groundwater with high δ15N-NO3
- values due to partial denitrification. In 

contrast, when DTW is low, septic discharge may directly reach the water table, causing 

unprocessed NH4
+ to enter the groundwater at high concentrations with an isotopic signature 

reflective of the septic source. This scenario likely explains the high NH4
+ concentration wells 

with low δ15N-NH4
+values, similar to the wastewater NH4

+ isotopic signature (+3.9 ± 2.8‰). The 

evidence suggests that the high NH4
+ concentrations, along with the lowest DTW values, indicate 

compromised OSSFs, likely due to sea level variations, which could be a significant issue in this 

region.  

5.2. Background 

Nitrogen is an essential growth-limiting nutrient for primary producers in marine 

ecosystems, however excessive nutrient inputs caused by anthropogenic activities are negatively 

affecting coastal waters worldwide (Gotkowska-Płachta et al., 2016; Yang et al., 2019). These 

inputs can lead to eutrophication, triggering harmful algal blooms that threaten aquatic food and 

water supplies, as well as the formation of dead zones that result in fish and shellfish mortality. 

Furthermore, excess nitrogen contributes to greenhouse gas emissions and overall water quality 

degradation, creating unsafe conditions for recreation and aquaculture (Anderson et al., 2008; Ji 

et al., 2017).  

When assessing nitrogen's effects on ecosystems, it is important to consider its various 

forms. Total dissolved nitrogen (TDN) in a system consists of both dissolved organic nitrogen 

(DON) and dissolved inorganic nitrogen (DIN). DIN, which includes nitrite (NO2
-), nitrate (NO3

-

), and ammonium (NH4
+), has traditionally been the primary focus in studies of nitrogen loading 

into water bodies. In contrast, DON is a complex mixture of molecules such as—but not limited 

to—urea, amino acids, and proteins (Yang et al., 2019). Sources of DIN and DON contamination 

from anthropogenic activities include animal waste, fertilizers, wastewater outfalls, septic tanks, 

and stormwater runoff (Davidson et al., 2014; Gotkowska-Płachta et al., 2016; Middelburg et al., 

2001). Co-occurring pollutants can help identify the primary sources of nitrogen loading. For 

example, fecal indicator bacteria (FIB) can serve as a marker for contamination from human or 

animal waste, aiding in pinpointing the sources impacting water bodies. 

According to the National Oceanic and Atmospheric Administration (NOAA), 

approximately 40% of the U.S. population resides in coastal counties, and this number continues 
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to grow. As urbanization expands in these areas, the need for water quality monitoring and public 

notification programs becomes increasingly critical. Fecal indicator bacteria are commonly used 

to assess the sanitary quality of water for recreational, industrial, and water supply purposes. 

Data from the National Water Quality Council reveals that in 2018, around 58% of all beaches 

analyzed in the United States and Puerto Rico had bacteria levels exceeding the recommended 

Beach Action Value (104 units per 100 mL water) on at least one occasion. This included 

exceedances at 85% of Gulf Coast sites and 45% of East Coast beaches (Water Quality Portal). 

These contamination events are expected to rise nationwide due to climate change-induced 

factors such as increasing temperatures, extreme weather events, and intensified precipitation, 

coupled with growing coastal populations (Powers et al., 2021; Elmir, 2018). Addressing this 

growing issue is challenging, as contamination can stem from a variety of point and nonpoint 

sources. 

Point source pollution originates from a single, identifiable source, such as a pipe, 

industrial stormwater discharge, or factory smokestack. In contrast, nonpoint source (NPS) 

pollution arises from diffuse, unconfined areas, making it challenging to pinpoint the exact 

sources. According to the EPA, NPS pollution typically results from land runoff containing 

fertilizers and animal wastes, precipitation, drainage, seepage, or malfunctioning septic systems. 

Faulty septic systems are hypothesized to be a major contributor to elevated fecal indicator 

bacteria (FIB) levels in coastal areas and may also play a role in excess nitrogen loading (Powers 

et al., 2021). On-site sewage facilities (OSSFs) are septic systems that treat and dispose of 

wastewater on the same property where it is generated. These systems are most prevalent in rural 

areas, barrier islands, and other locations where sewer infrastructure is difficult to establish; 

approximately 24% of U.S. homes are served by OSSFs (Hoghooghi et al., 2021). A typical 

OSSF consists of a septic tank for primary wastewater treatment, followed by effluent discharge 

to the soil, where soil layers act to adsorb, purify, and filter contaminants before the effluent 

mixes with groundwater. However, improperly installed or failing OSSFs may not provide 

sufficient residence time or proper conditions to effectively treat nitrate and other pollutants 

before mixing with groundwater (TGPC, 2019; OSSF Information System). Groundwater 

seepage contaminated by such effluent can infiltrate porewater, a key medium for solute 

transport to surface waters in coastal zones or streams. This porewater exchange can directly 

contribute to nutrient overloading in surface waters, resulting in eutrophication (Anderson et al., 

2008; Krause et al., 2009; Sadat-Noori et al., 2019). 

Although the contributions of OSSFs to coastal nitrogen loading are not well understood, 

recent reports indicate that septic system malfunctions are increasingly linked to sea level 

variations and more frequent heavy precipitation events. These factors have been associated with 

both fecal and nitrogen pollution (Powers et al., 2021; Elmir, 2018). Rising water tables reduce 

the amount of unsaturated soil available for wastewater filtration, thereby diminishing the 

effectiveness of OSSFs. Coastal communities face heightened risks of OSSF failures due to 

sandy, porous soils, erosion, severe weather events, and the impacts of sea level variations driven 

by climate change (Mallin, 2013). Additionally, many OSSFs are old or undocumented, as 

permits were not required before the Clean Water Act of 1972. These aging systems are at greater 

risk of malfunction, potentially contaminating groundwater and drinking water supplies with 

pathogens, nutrients, and other harmful substances. While fecal indicator bacteria (FIB) can 

signal failing systems, it is essential to identify and trace all potential sources of contamination, 

including OSSFs, to better understand their role in nonpoint source pollution. One effective 
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method for this is the analysis of stable nitrogen isotopes in co-migrating nitrogen species within 

affected waters, which can help determine the contribution of OSSFs to nutrient pollution. 

In nature, nitrogen exists as two stable isotopes: 14N and 15N, having a mass of either 14 

atomic mass units (amu) or 15 amu, respectively (Middelburg et al., 2001). Organisms generally 

prefer incorporating 14N over 15N, due to its lower atomic mass and lower energy requirements 

(Craine et al., 2015). This causes 15N and 14N to have different reaction rates, resulting in 

fractionation. The ratio of these isotopes (15N/14N) can be unique for each nitrogen source and 

serve as a “source signature”. The isotopic composition (δ15N) of these sources is determined by 

comparing their nitrogen isotope ratios to the nitrogen international reference standard, 

atmospheric N2, which is reported as 0‰ by definition (Junk and Svec, 1958). Isotopic 

composition is expressed in terms of a delta (δ) value expressed in permil (‰) units difference 

from this reference standard: 

δ=(Rsample/Rstandard -1) x 1000 

where "R" is the ratio of the heavy to light isotope.  

These unique stable isotope ratios of nitrogen have been used for tracing sources in the 

environment (Table 5.1). For example, sources of nitrate such as septic/wastewater influent 

(δ15N = +14.9‰ ± 3.5‰) and animal waste (δ15N = +15‰ ± 10‰) are often more enriched in 
15N than other sources such as fertilizers (δ15N = −0.9‰ ± 1.9‰), wet deposition (δ15N = −1.9 ± 

3.5‰), and soil (+5‰ ± 2‰) (Kendall et al., 2007; Cox, in prep; Qiu et al., 2024; Xue et al., 

2009). Ammonium sources from untreated sewage have δ15N values of +5 to + 9‰, while 

fertilizers have a range of δ15N= −3.9‰ ± 0.3‰, livestock waste values are +7.4 ± 3.8‰, and 

wet deposition values range from −3.1‰ ± 4.0‰ (Choi et al., 2007; Qiu et al., 2024; Cole et al., 

2006; Maeda et al., 2016). Organic nitrogen sources include fertilizers (δ15N = 0.3‰ ± 0.2‰), 

wet deposition (δ15N = −7.0‰ to +13.1‰), sewage/septic (δ15N= +22.3‰ ± 7.9‰), and 

livestock waste (δ15N = +7.8 ± 0.6‰) (Liu et al., 2021; Liu et al., 2017; Qiu et al., 2024). 

 

Table 5.1. Potential sources of nitrogen and their corresponding isotopic values. These unique 

isotope signatures can be used to determine pollutant contributions in affected waters. 

Source δ15N-NO3
- δ18O-NO3

- δ15N-NH4
+ δ15N-DON 

Synthetic 

Fertilizer 

−0.9‰ ± 1.9‰ 

(Kendall et al., 2007) 

22‰ ± 3‰ 

(Jung et al., 2020) 

−3.9‰ ± 0.3‰ 

(Choi et al., 2007) 

0.3‰ ± 0.2‰ 

(Liu et al., 2021) 

Wet 

Deposition 

−1.9‰ ± 3.5‰ 

(Qiu et al., 2024) 

+64.6‰ ± 7.8‰ 

 (Qiu et al., 2024) 

−3.1‰ ± 4.0‰ 

(Qiu et al., 2024) 

 −7.0‰ to + 13.1‰ 

(Liu et al., 2017; 

Qui et al., 2024) 

Sewage/Septic +14.9‰ ± 3.5‰ 

(Cox, 2023) 

+19.3‰ ± 2.6‰ 

(Cox, 2023) 

+3.9 ± 2.8‰  

(Cox 2023) 

+22.3‰ ± 7.9‰ 

(Qiu et al., 2024) 

Livestock 

Waste 

+15‰ ± 10‰ 

(Xue et al., 2009) 

+4‰ ± 4‰ (Maeda 

et al., 2016) 

+7.4‰ ± 3.8‰ 

(Maeda et al., 

2016) 

+7.8‰ ± 0.6‰ 

(Liu et al., 2021) 

Soil +5‰ ± 2‰  

(Nikolenko et al., 2018) 

5.2‰ ± 0.4‰ (Nikolenko et al., 2018)  

 

While many nitrogen sources have unique isotopic signatures, different biological 

processes of the nitrogen cycle can have fractionation effects that alter the original isotopic 

composition (Table 5.2). Strong fractionation is associated with dissimilatory processes, while 

weak fractionation is associated with assimilatory processes such as primary production 

(Ryabenko, 2013). Dissimilatory processes include denitrification, reduction of nitrate to 
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ammonium (DNRA) in suboxic to anoxic conditions, nitrification, and anaerobic oxidation of 

ammonium (anammox) (Ribot et al., 2017). In denitrification, nitrate is used to oxidize organic 

matter, causing the production of N2O, NOx, and N2. This is considered a net loss of DIN if these 

compounds leave as gases; otherwise, these will remain as inorganic N compounds. A competing 

nitrate reduction process, DNRA, is the anaerobic reduction of nitrate to nitrite, and then to 

ammonium. Research suggests that DNRA starts to be favored over denitrification with rising 

salinity and increasing temperature. This is also the case with a high DOC:NO3
- ratios (Giblin et 

al., 2013; Gao et al., 2021). Nitrification is the oxidation of ammonium to nitrate and is used to 

meet energy demands of plants. Nitrification has been shown to increase with ammonium 

concentrations, especially in streams receiving wastewater effluents (Ribot et al., 2017). Other 

processes include anammox, where nitrite is combined with ammonium to produce nitrogen gas 

under anaerobic conditions, and remineralization, where organisms consume organic nitrogen 

and convert some of it back to ammonium (Kartal et al., 2010; Möbius, 2013).  

Nitrification is associated with a fractionation of -35 to 0‰, while denitrification is 

associated with an effect of +5 to + 25‰ (Granger and Wankel, 2016). Other processes and their 

corresponding enrichment factors are NO3
- uptake (5.9‰ ± 3.7‰), NH4

+ uptake (9.4‰ ± 6.6‰), 

anammox (– 31‰), remineralization/ammonification (-2.3 to 0‰), and nitrogen fixation (−3 to + 

1‰) (Denk 2017; Brunner, et al., 2019; Kendall et al., 2007; Yu et al., 2021) (Table 5.2). 

Nitrogen isotope ratio data can also help discern if a reaction is complete; for example, 

incomplete nitrification of ammonium would cause lower δ15N-NO3
- than that of the initial 

ammonium δ15N value (Murgulet and Tick, 2013). It is important to take these processes and 

unique source signatures into account to determine nitrogen inputs and cycling in different 

regions and ecosystems. 

Table 5.2. Nitrogen processes and their corresponding enrichment factors. 

Process Enrichment Factor (ɛ) Reference 

Nitrification -35‰ to 0‰ Granger and Wankel, 2016 

Denitrification +5‰ to +25‰ Granger and Wankel, 2016 

NO3
- Uptake 5.9‰ ± 3.7‰ Denk et al., 2017 

NH4
+ Uptake 9.4‰ ± 6.6‰ Denk et al., 2017 

Anammox 31‰ Brunner et al., 2013 

Remineralization/Ammonification -2.3‰ to +1‰ Yu et al., 2021; Mobius 2013; 

Kendall et al., 2007 

Nitrogen Fixation −3‰ to + 1‰ Kendall et al., 2007 

DNRA unknown Inamdar et al., 2024 

 

While nitrogen has been used to fingerprint sources of nitrate contamination and to 

analyze the effects of nitrogen processes, the identification of nitrogen sources and cycles using 

only δ15N values is limited because of overlapping values from the different nitrate sources. 

Analysis can therefore be combined with δ18O to reduce the uncertainty of nitrogen isotopes in 

identifying nitrate source contributions (Jung et al., 2020). The predictable changes in 

composition of both nitrogen and oxygen isotopes in nitrate in water can also help determine the 

extent to which a source has experienced nitrification (nitrate formation), assimilation (nitrate 

removal) and/or denitrification (nitrate removal) (Snow, 2018). These dual isotopes can then be 

plotted vs each other to identify sources and processing and also used in Bayesian-type mixing 

models to estimate source apportionment (Kendall et al., 2007; Zhang et al., 2018).  
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Identifying sources of contamination is becoming increasingly critical in regions like the 

Texas Gulf Coast, where the Texas Beach Watch program has reported rising levels of fecal 

indicator bacteria (FIB) over the past decade (Figure 5.1). From 2009 to 2019, the Texas General 

Land Office (TGLO) documented that, on average, 21.90% of water samples in Matagorda 

County exceeded the United States Environmental Protection Agency’s (US EPA) Beach Action 

Value (104 MPN). Similarly, Brazoria County reported an average exceedance rate of 11.93%, 

while Galveston County averaged 7.09% exceedances during the same period (Powers et al., 

2021). Brazoria and Matagorda Counties are particularly concerning, as 2019 enterococci 

concentrations were statistically higher than in other Texas coastal counties and showed a 

significant increase compared to previous years. Since there are relatively few point sources of 

FIB in these areas, it is suspected that nonpoint sources (NPS), particularly from on-site sewage 

facilities (OSSFs), are the primary contributors. According to the Texas Groundwater Protection 

Committee (TGPC), 

approximately one in five homes 

in Texas relies on an OSSF for 

wastewater treatment and 

disposal, with numbers rapidly 

increasing along the Gulf Coast. 

Given the rapid growth of 

housing and OSSFs in this 

region, the Texas Commission on 

Environmental Quality (TCEQ) 

and Texas AgriLife regularly 

conduct inventories of septic 

systems in selected counties 

within the Coastal Zone of 

Texas. These inventories are 

essential for identifying 

malfunctioning OSSFs as part of 

coastal NPS pollution control efforts. Many systems uncovered during these assessments are old 

or undocumented, placing them at the highest risk for malfunctions and associated water quality 

impacts. 

Given the rising concerns about OSSF malfunctions and contamination, along with the 

lack of nutrient and DON data along the increasingly vulnerable Texas Gulf Coast, it is critical to 

identify the sources and drivers of nitrogen loading in Texas coastal waters. For Task 3, we 

employed stable isotope techniques to investigate the sources and processing of nitrogen 

loading to sandy barrier islands and coastal waters from Matagorda to Galveston Island. 

Groundwater elevations were continuously monitored throughout the project to assess whether 

water table fluctuations were associated with changes in nitrogen loading. The δ¹⁵N and nitrogen 

concentration data collected in this study provide valuable insights into the sources with the 

greatest impacts on water quality throughout the year in these coastal regions. The findings aim 

to inform the development of effective mitigation strategies to prevent water contamination, 

harmful algal blooms, and eutrophication. Additionally, monitoring the effects of sea level 

variations on nitrogen loading will equip stakeholders, landowners, and policymakers in coastal 

communities with the knowledge needed to prepare for varying sea levels and the broader 

impacts of climate change in the years to come. 

Figure 5.1. Temporal trends of water sample enterococci 

concentrations along Texas Gulf Coast beaches from 2009 to 

2021 (Texas BeachWatch; Powers et al., 2021). 
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5.3. Methods 

5.3.1. Sample Collection 

Samples were collected from various sites along the coast of Matagorda, Brazoria, and 

Galveston counties monthly from November 2021-May 2023 (Figure 4). Groundwater samples 

from wells are located within 200 meters from the shoreline at predetermined locations near 

septic systems. Corresponding pore and surface water sites (denoted by matching numbers in 

Figure 4) are located along a straight transect that was the closest distance from the well to the 

shore. Pore and surface water samples were collected ~6 m from the shoreline. 

On-site physical and chemical properties of water collected included temperature, 

salinity, pH, conductivity, dissolved oxygen, and oxidation/reduction potential by a multi-probe 

YSI series six sonde. Surface water was collected at 20 cm below the air-water interface. 

Porewater was sampled from the sediment with a piezometer sampler attached to a peristaltic 

pump after the water ran clear (free from sand).  

For groundwater sampling, before samples were collected, the well was purged by 3 well 

volumes. To determine the amount of stagnant water necessary to purge, the amount of standing 

water was first calculated by measuring the diameter of the well (2 inches for this project), total 

depth of the water in the well (25 feet for this project), and the water level at the time of 

sampling. The water level at the time of sampling was calculated by subtracting the depth of 

water from the top of the casing (taken in the field with measuring tape).  

Groundwater was sampled at the wellhead using a peristaltic pump after all YSI readings 

were stable. All water samples were placed in ice and brought back to the lab in 1L HPDE 

bottles, which had been rinsed with acid, MQ water, and finally triple rinsed with sample water. 

Samples were filtered through a 0.2 µm GF/F and frozen before analysis. Before each 

concentration analysis section outlined below, frozen samples were completely thawed in a 

room-temperature water bath. After the needed amount of thawed samples was taken, the 

samples were immediately placed back in the freezer. 

5.3.2. Sample Analysis 

5.3.2.1. NH4
+, NO2

-, NO3
-, TDN and DON concentration Analysis 

The concentration of NH4
+ was measured using the o-phthalaldehyde (OPA) fluorometric 

method (Holmes et al., 1999). The working reagent was prepared by mixing 5 mL OPA solution 

(1 g of reagent grade OPA in 25 mL of ethanol), 0.5 mL borate solution (10 g of reagent grade 

sodium tetraborate in 250 mL MQ water), and 94.5 mL sodium sulfite solution (0.8 g of reagent 

grade sodium sulfite in 100 mL MQ water). Samples were measured with 5 standards of NH4
+ (0, 

1.0, 10.0, 20.0, and 50 µm). For each sample and standard, 0.25 mL was added into individual 

cuvettes, followed by 1 mL of the working reagent. Then each cuvette was shaken and placed in 

the dark to react for 3 hours. After 3 hours, cuvettes were analyzed for raw fluorescence (RFU) 

using a Trilogy® Laboratory Fluorometer with the UV/Ammonium module. The NH4
+ 

concentrations were then calculated through the calibration curve produced from the RFU values 

of the standards, with an R2 value of at least 0.999. 

 

5.3.2.2. NO2
- Concentration Analysis 

The NO2
- concentration was measured using a colorimetric method (Tsikas, 2007). The 

color producing reagent was made by mixing the sulfanilamide solution (8 g sulfanilamide, 70 

mL of phosphoric acid, and 30 mL of MQ water) and the NEDA solution (0.56 g N-(1-Napthyl)-
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ethylenediamine dihydrochloride in 100 mL MQ water) in a 10:1 ratio. Samples were measured 

with 5 standards NO2
- (0, 1.0, 10.0, 30.0, and 50.0 µm). For each sample and standard, 1 mL was 

added into individual cuvettes, followed by 0.25 mL of the color producing reagent. Then 

cuvettes were shaken and placed in the refrigerator to react for 30 minutes, followed by 20 

minutes at room temperature for equilibration. Cuvettes were then analyzed for absorbance using 

a Trilogy® Laboratory Fluorometer with the Absorbance/N module. The NO2
- concentrations 

were calculated through the calibration curve produced from the absorbance values of the 

standards with an R2 value of at least 0.999. 

5.3.3.3 NO3
- Concentration Analysis 

To measure NO3
- the cadmium reduction method was used to reduce it to NO2

- (Tsunogai 

et al., 2008). The reductant, spongey cadmium, was made by adding 8-10 zinc sticks in 11 g 

cadmium chloride dissolved in around 400 mL of MQ water. After sitting overnight but before 

24 hours, the zinc sticks were removed from the spongey cadmium and 3 drops of 6 N HCl were 

added to acidify the cadmium. The remaining solution was drained, and the solid cadmium was 

submerged in a 6 N HCl solution. A small spatula was used to break the cadmium into small 

pieces to increase surface area, and also activate the cadmium in the HCl solution. The HCl 

solution was then drained, and the cadmium was rinsed with MQ water until the pH was neutral 

(7) or lower.  

Nitrate standards were prepared for analysis along with the samples (30.0, 50.0, and 70.0 

µM). An ammonium chloride buffer was mixed by dissolving 3.74 g of ammonium chloride in 

80 mL HPLC grade water in a 150 mL HDPE plastic bottle. Then 0.5 mL of 6 M NaOH was 

added to adjust the pH to 8.5, and the buffer was diluted with an additional 20 mL HPLC grade 

water. 1 mL of this buffer was added to each 5 mL sample/standard in a 15 mL centrifuge tube. 

Next, 0.3 g of the cadmium was added to each centrifuge tube, and samples were placed on a 

shaker table for 90 minutes to ensure the NO3
- is reduced to NO2

-. Then, the concentration of 

NO3
- + NO2

- was calculated via the colorimetric method explained under the NO2
- concentration 

analysis section, taking into account the dilution of the sample/standard with the ammonium 

chloride buffer by multiplying the concentration of each sample by 6/5, and using the standards 

to ensure a conversion of NO3
- to NO2

- of at least 90% (Tsikas, 2007).  

5.3.3.4. NH4
+ Removal for TDN Concentration Analysis 

The DON concentration was calculated as the difference between TDN and DIN 

concentrations. In this case TDN is equal to DON + NO3
-/NO2

- since NH4
+ was removed in the 

previous step. The concentration of TDN was measured by oxidizing the TDN to NO3
- by the 

persulfate method, followed by reduction to NO2
- by the cadmium method (Tsunogai et al., 

2008). The oxidizer, persulfate solution, was made by adding 1 g persulfate into 1.17 mL 6 N 

NaOH followed by dilution to a final volume of 20 mL using HPLC water. The persulfate 

solution (0.15 mL) was added to 10 mL of each sample and shaken well before putting into the 

autoclave for two 30-minute cycles. Then these oxidized samples were reduced to NO2
- by the 

cadmium method mentioned in the NO3
- concentration analysis section. DON standards (e.g., 

urea, glycine, EDTA, N-acetyl-D-glucosamine) were oxidized and reduced with samples to make 

sure at least 90% conversion of TDN to NO2
- was achieved. 

5.3.3.5. TDN and DON Concentration Analysis 

The DON concentration was calculated as the difference between TDN and DIN 

concentrations. In this case TDN is equal to DON + NO3
-/NO2

- since NH4
+ was removed in the 
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previous step. The concentration of TDN was measured by oxidizing the TDN to NO3
- by the 

persulfate method, followed by reduction to NO2
- by the cadmium method (Tsunogai et al., 

2008). The oxidizer, persulfate solution, was made by adding 1 g persulfate into 1.17 mL 6 N 

NaOH followed by dilution to a final volume of 20 mL using HPLC water. The persulfate 

solution (0.15 mL) was added to 10 mL of each sample and shaken well before putting into the 

autoclave for two 30-minute cycles. Then these oxidized samples were reduced to NO2
- by the 

cadmium method mentioned in the NO3
- concentration analysis section. DON standards (e.g., 

urea, glycine, EDTA, N-acetyl-D-glucosamine) were oxidized and reduced with samples to make 

sure at least 90% conversion of TDN to NO2
- was achieved. 

5.3.3.6. δ15N and δ18O of NO3
-, δ15N-NH4

+, δ15N-DON Analysis 

The isotopic ratios of NO3
- and NO2

- were measured by the denitrifier bacteria method 

(Sigman et al., 2001). The NO3
- and NO2

- in the sample were converted to N2O by denitrifier 

bacteria and the nitrogen isotopic composition was measured by injecting the N2O into a 

continuous flow isotope ratio mass spectrometer (CF-IRMS). Internationally recognized 

standards (USGS34, USGS32, IAEA-N3 and USGS35) were measured during sample analysis to 

provide a known δ15N-NO3
- reference for data corrections. Nitrite was not removed but on 

average was only 5% of the total NO3
- + NO2

- concentration so δ15N-NO3
-/δ15N-NO2

- is assumed 

to represent δ15N-NO3
- for purposes of investigation and discussion. The nitrogen isotopic ratio 

was calculated using the equation below and was reported in conventional delta (δ) notation in 

permil (‰): 

δ N15 − NO2
−/NO3

−  =
( 𝑁15 / 𝑁14 )sample − ( 𝑁15 / 𝑁14 )standard

( 𝑁15 / 𝑁14 )standard
𝑥 1000 

3.3.3.7. δ15N-NH4
+ Analysis 

The NH4
+ was oxidized to NO2

- via bromate/bromide oxidation method (Felix et al., 

2013; Zhang et al., 2007), and then the nitrogen isotopic ratio of DIN (NH4
+, NO2

- and NO3
-) 

was measured using the denitrifier bacteria method. If the concentration was > 10 µM then the 

sample was diluted with MQ water to 10 µM before undergoing oxidation. The Br/Br stock 

solution was made by adding 0.6 g sodium bromate and 5 g sodium bromide in 250 mL MQ 

water. Then the Br/Br working reagent was made by adding 1 mL of the stock solution to 50 mL 

Milli-Q water and 6 mL of 6 N HCl. The mixture was left to react in the dark for 5 minutes, after 

which the working reagent was diluted to a volume of 100 mL with 6 N NaOH. The working 

reagent (1 mL) was added into samples and shaken vigorously before being put on the shaker for 

90 minutes to make sure the NH4
+ was oxidized. Internationally recognized standards (USGS34, 

USGS32, IAEA-N3 and USGS35) were measured during sample analysis to provide a known 

δ15N-NO3
- reference for data corrections. Additionally, USGS isotope standards (USGS 25 

ammonium sulfate and USGS 26 ammonium sulfate) were oxidized along with the samples and 

included as reference samples during isotope analysis in order to check for oxidation efficiency 

and to correct for any interference due to reagent blank effects. The δ15N- NH4
+ was calculated: 

δ 𝑁 − 𝐷𝐼𝑁 =  𝑓NH4
+ ×15 δ N15 − NH4

+ +  𝑓NO2
−/NO3

− × δ N15 − NO2
−/NO3

− 

where fNH4+ stands for the fraction of the concentration of NH4
+ contributing to DIN of 

the sample and 𝑓NO2
−/NO3

−- stands for the fraction of the concentration of NO2
- and NO3

- 

contributing to DIN of the sample. 
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5.3.3.8. δ15N-DON Analysis 

The δ15N-DON was calculated: 

δ 𝑁 − TDN =  𝑓DON ×15 δ N15 − DON + 𝑓NO2
−/NO3

− × δ N15 − NO2
−/NO3

−  

where fDON stands for the fraction of the concentration of DON contributing to TDN of 

the sample and 𝑓NO2
−/NO3

− stands for the fraction of the concentration of DIN contributing to TDN 

of the sample. The error of back-calculated δ15N-DON was reported to be over 1.5‰ when DON 

was less than 20% of TDN pool (Cao et al., 2021). Thus, only samples that had DON higher than 

20% of TDN (in this case DON = TDN – NO2
-/NO3

-) underwent δ15N-TDN analysis. 

Here the NH4
+ was removed from the sample and only NO2

- and NO3
- were left in the 

DIN pool to reduce the error due to back calculation. This was done through NH4
+ diffusion. 

NaOH (5 M) was added to raise the pH above 10 and remove the NH4
+. After NH4

+ was 

removed, the DIN pool only contained NO2
- and NO3

- and the δ15N-DIN was measured as 

specified above. In order to measure δ15N-TDN, the TDN was oxidized to NO3
- using the 

persulfate method and then the isotopic ratios could be measured using the denitrifier bacteria 

method (Knapp et al., 2005). 

5.3.3. Isotope Mixing Model  

A dual isotope mixing model for NO3
- source contributions was developed for 

groundwater using source signatures of sewage/septic, atmospheric deposition, dog waste/gull 

guano, and soil and soil was replaced with Gulf of Mexico (GOM) NO3
- sourced for pore and 

surface water. Nitrogen isotope signatures of potential sources are shown in Table 5.3. 

Contamination can originate from various sources, but a primary source was hypothesized to be 

septic systems throughout the study area due to most well sites being located in relatively close 

proximity to an OSSF. In addition, there are about 1,223 documented OSSFs on the barrier 

islands of this study area. Of these, 978 are either over 10 years old or have an undocumented 

age, which poses an increased risk for failure or malfunction (Houston-Galveston Area Council 

OSSF Information System; Bonaiti et al., 2017).  

Fertilizers and animal manure are not likely contaminants to these areas, as lands are 

herbaceous wetlands or highly urbanized (Houston-Galveston Area Council). However, bacteria 

marker data indicates dog and gull waste (Kapoor personal communication/this report), as a 

prominent source of bacteria and have been included in this mixing model as a potential 

significant source of nitrogen. In addition, there have been documented cases of contamination 

of beaches from dogs and gulls in beaches of California and Florida (Goodwin et al., 2016; 

Converse et al., 2012). The δ15N value for these sources overlaps and were combined for a value 

of 7.9 ± 2.1‰ (Mizota 2009; 2009a; Hixon et al., 2022). Another possible nitrogen source is 

atmospheric deposition. Atmospheric deposition affects biogeochemistry in the upper ocean, and 

the coastal bend of Texas is considered a humid subtropical climate (U.S. Climate Data). The 

Galveston Coast Guard Station, located on Galveston Island, monitors weather conditions and 

reports that the wet season is from June-September, while the dry season is from October-May. 

The last source included in this model was soil. Sandy soils comprise the majority of the study 

area; these types of soils are documented as hotspots for organic matter mineralization, as sands 

are highly permeable (Zhou et al., 2023). 

The mixing model was completed by the Stable Isotope Analysis in R (SIAR) that uses a 

Bayesian framework. The following equations were used: 
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δ15N-Ngulf = fss× (δ15N-Nss + ɛ) + fdg× (δ15N-Ndg + ɛ) + fsoil or mar × (δ15N-Nsoil or mar + ɛ) + 

fwd× (δ15N-Nwd + ɛ) 

, 

where δ15N-Ngulf is the nitrogen isotopic composition of NO3
- of Gulf samples and fsep, 

fgull, fsoil, fmar and fwd are the contribution of sewage/septic, dog waste/gull guano, soil, Gulf of 

Mexico and wet deposition, respectively. δ15N-Nss is the nitrogen isotopic ratio of NO3
- from 

sewage/septic. δ15N-Ngull is the nitrogen isotopic ratio of NO3
- from dog waste/gull guano. δ15N-

Nsoil is the nitrogen isotopic ratio of NO3
- from soil. δ15N-Nwd is the nitrogen isotopic ratio of 

NO3
- from wet deposition and δ15N-Nmar is the nitrogen isotopic ratio of from the Gulf of Mexico 

waters. ɛ is the isotope effect applied to each source. To determine the isotope effect, ɛ, of NO3
- 

in porewater ln NO3
- vs δ15N-NO3

- was but the relationship was insignificant (p = 0.74), however 

for 90% of the data yields a significant correlation (p < 0.0001) with a slope indicating an ɛ of 

4.9‰. The porewater δ18O-NO3
- vs δ15N- NO3

- slope (1.16) which is close to a theoretical 1:1 

slope of denitrification and was considered the primary fractionation process albeit with 

contributions from other processes leading to deviations from the 1:1 line (e.g., DNRA 

nitrification, anammox). A literature porewater denitrification fractionation effect of 5‰ was 

similar to the ɛ of 4.9‰ associated with 90% of the data and was applied to porewater δ15N-NO3
- 

values (Sigman and Fripiat 2019) a fractionation correction factor. To determine isotope effect 

occurring in groundwaters, δ15N vs δ18O was plotted and it was observed that the trend for 

samples with δ15N values over 30‰ was indicating a different fractionation process than those 

samples under 30‰. The under 30‰ samples did not have a significant correlation between ln 

NO3
- and δ15N-NO3

- but the δ15N vs δ18O had a slope of 0.89 which was indicative of a primarily 

denitrification process and the literature porewater denitrification isotope effect of 5‰ was 

applied. The 15N vs 18O slope for the >30‰ samples was very low (0.13) which is indicative of 

the competing production of nitrate through oxidation and the loss of nitrate through reduction. 

Since the wells have low DO levels, the oxidation process is likely anammox which has been 

shown as a significant oxidation pathway in aquifers (Clark et al., 2008; Erler et al., 2008; 

Robertson et al., 2012; Granger and Wankel 2016). This pathway can account for large 

fractionation explaining the high δ15N values. Brunner et al., 2013 suggest nitrate production 

associated with anammox displays an inverse kinetic fractionation effect of -31‰ which was be 

applied here to groundwater samples with δ15N-NO3
- values >30‰. Surface water δ15N-NO3

- 

values are likely a product of nitrification, denitrification and assimilation. To determine the 

overall ɛ, surface ln NO3
-vs 15N- NO3

- was plotted without eight high concentration outliers. The 

result was a highly significant relationship (p = 0.0005) with a slope of 3.3 which is the ɛ factor 

applied to the surface water samples (Kendall et al., 2007). 

 

Table 5.3. Nitrate nitrogen isotopic signatures used for the SIAR mixing model. When possible, 

source signatures as local to the study region were used. Sewage/Septic values are from three 

wastewater treatment plants in the Texas Coastal Bend, wet deposition values are from a station 

south of the study region located on the Texas coast and marine values are from Gulf of Mexico 

waters. 

Source δ15N-NO3
- Reference 

Wet Deposition −1.9‰ ± 3.5‰ 
 

Qiu et al., 2024 

Sewage/Septic +14.9‰ ± 3.5‰ 
 

Cox, in prep 

Dog/Gull guano +7.9‰ ± 2.1‰ 
 

Mizota, 2009; 2009a; Hixon et al., 

2022 
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Soil +5‰ ± 2‰  Nikolenko et al., 2018 

 

Marine  

 

+4.7‰ ± 0.9‰  

Howe et al., 2020 

 

Table 5.4. Isotope effects used for the SIMMR model according to sample matrix. 

Sample Matrix 15ɛ Reference 

   

Groundwater 

δ15N > 30 

31‰ 

 

Granger and Wankel, 2016; Brunner et al., 2013 

Groundwater 

δ15N < 30 

5‰ 

 

Sigman and Fripiat 2019 

Surface water 3.3‰ 

 

Empirical data from this work 

Porewater 5‰ Sigman and Fripiat 2019 

   

 

5.4. Results 

Surface, pore, and groundwater samples were analyzed for NO3
-, NO2

-, NH4
+, and DON 

concentrations, as well as δ15N-NO3
-, δ18O-NO3

-, δ15N-NH4
+, and δ15N-DON values (Table 5.5). 

When reporting seasonal trends, fall is September 2022, October 2022, November 2021, 2022; 

winter is December 2021-February 2022; spring is March-May 2022, 2023; and summer is June-

July 2022. Three outlier δ15N-DON were within the %DON of TDN for valid isotope back 

calculation but were high outliers and were not included in averages (i.e., 1/2022 W5 (75.7‰) 

1/2022 W9 (81.6‰) and 3/2023 W9 (105.3‰). 

 

Table 5.5. Nutrient concentration averages (µM), δ15N, and δ18O averages (‰) (November 

2021- April 2023) for surface, pore, and groundwater samples. n = # of samples. Isotope data is 

only available for samples with a concentration ≥ 3 µM of the analyte of interest.   

Sample 

Type 

NO3
-  

(µM) 

NO2
- (µM) NH4

+  

(µM) 

DON 

(µM) 

δ15N- 

NO3
- 

δ18O-NO3
- δ15N-

NH4
+ 

δ15N-

DON 

Surface 3.4±5.2 

(n=300) 

0.3±1.0 

(n=300) 

4.9±9.4 

(n=300) 

7±5 

(n=300) 

13.5±3.2 

(n=107) 

17.3±4.7 

(n=107) 

13.1±6.1 

(n=66) 

5±5 

(n=208) 

winter 5.2±7.2 

(n=101) 

0.3±1.0 

(n=101) 

3.8±3.8 

(n=101) 

5±5 

(n=101) 

12.6±3.0 

(n=54) 

17.4±5.5 

(n=54) 

11.2±6.3 

(n=28) 

4±4 

(n=47) 

spring 2.6±2.3 

(n=83) 

0.6±1.5 

(n=83) 

3.0±2.7 

(n=83) 

7±6 

(n=83) 

13.8±3.0 

(n=28) 

16.8±3.1 

(n=28) 

13.4±6.3 

(n=21) 

6±8 

(n=63) 

summer 2.9±1.1 

(n=50) 

0.2±0.3 

(n=50) 

2.2±2.0 

(n=50) 

9±4 

(n=50) 

15.4±3.2 

(n=22) 

18.4±3.6 

(n=22) 

14.1±3.6 

(n=7) 

7±3 

(n=38) 

fall 2.0±5.3 

(n=66) 

0.1±0.2 

(n=66) 

2.4±2.3 

(n=66) 

10±4 

(n=66) 

13.0±3.1 

(n=3) 

10.7±1.8 

(n=3) 

16.7±4.0 

(n=10) 

4±3 

(n=60) 

Pore 4.3±7.1 

(n=192) 

0.2±0.4 

(n=192) 

27.7±40.6 

(n=192) 

7±8 

(n=192) 

14.7±4.3 

(n=77) 

12.9±5.7 

(n=77) 

10.6±6.3 

(n=138) 

5±5. 

(n=113) 

winter 7.6±12.5 

(n=52) 

0.3±1.4 

(n=52) 

27.3±33.4 

(n=52) 

8±10 

(n=52) 

14.0±6.8 

(n=32) 

12.5±6.8 

(n=32) 

11.4±6.2 

(n=43) 

6±7 

(n=24) 

spring 2.7±2.5 

(n=53) 

0.2±0.2 

(n=53) 

31.5±28.3 

(n=53) 

7±8 

(n=53) 

15.3±4.8 

(n=16) 

13.7±4.4 

(n=16) 

7.8±7.3 

(n=47) 

5±5 

(n=31) 

summer 3.1±1.6 

(n=47) 

0.3±0.5 

(n=47) 

32.9±70.0 

(n=47) 

7±7 

(n=47) 

16.3±2.7 

(n=19) 

14.6±4.3 

(n=19) 

11.6±3.8 

(n=21) 

5±6 

(n=28) 
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fall 2.6±2.5 

(n=40) 

0.2±0.3 

(n=40) 

18.6±26.4 

(n=40) 

8±8 

(n=40) 

13.2±2.3 

(n=10) 

9.7±4.0 

(n=10) 

13.7±3.6 

(n=27) 

6±4 

(n=30) 

Ground 34.4±113.5 

(n=207) 

2.7 ±10.1 

(n=207) 

158.9±345.2 

(n=207) 

21±58 

(n=207) 

29.3±14.3 

(n=78) 

20.5±6.3 

(n=78) 

10.9±8.3 

(n=116) 

3±11 

(n=95) 

winter 69.1±191.5 

(n=64) 

4.3±11.9 

(n=64) 

127.4±194.4 

(n=64) 

29±71 

(n=64) 

32.0±13.0 

(n=23) 

22.2±7.9 

(n=23) 

10.3±9.4 

(n=42) 

6±17 

(n=26) 

spring 22.5±40.4 

(n=59) 

3.4±3.7 

(n=59) 

172.1±506.5 

(n=59) 

30±77 

(n=59) 

27.3±15.8 

(n=24) 

18.5±5.3 

(n=24) 

7.6±7.8 

(n=33) 

2±5 

(n=31) 

summer 10.6±18.4 

(n=36) 

1.3±2.6 

(n=36) 

257±378.7 

(n=36) 

7±11 

(n=36) 

26.8±12.6 

(n=19) 

23.2±3.0 

(n=19) 

13.0±5.7 

(n=14) 

1±8 

(n=13) 

fall 19±53.2 

(n=48) 

0.9±3.5 

(n=48) 

111.3±199.2 

(n=48) 

8±10 

(n=48) 

32.1±16.1 

(n=12) 

16.9±6.1 

(n=12) 

14.9±6.2 

(n=27) 

2±11 

(n=25) 

 

5.4.1. Nitrate Spatial and Temporal Variations 

5.4.1.1. Nitrate Surface Water  

The average NO3
- concentrations of surface water samples overall were 3.4 ± 5.2 µM (n 

=300). Concentrations were significantly higher in the winter (5.2 ± 7.2 µM, n=101; p=0.002). 

than fall (2.0 ± 5.3 µM, n = 66), spring (2.6 ± 0.23 µM, n=83; p = 0.03), and summer (2.9 ± 1.1 

µM, n=50; p=0.03)(ANOVA). Winter, spring, and summer were statistically similar (Figure 5.2) 

and while most months were statistically similar averaging 2.8 ± 3.3 µM (n = 284), January 2023 

was distinctly higher 14.7 ± 13.8 µM (n =16). For most sites there were no significant 

differences in average concentrations (p > 0.05; ANOVA) (Figure 5.3) with sites 1, 12, 14, and 

19 being observably higher than the average. 

Average δ15N-NO3
- values were 13.5 ± 3.2‰ (n = 108) and average δ18O-NO3

- values 

were 17.3 ± 4.7‰ (n = 108). δ15N values (15.4 ± 3.2‰) in summer were significantly higher 

than in fall and winter (p < 0.001). Fall δ18O values (10.7 ± 1.8‰) were significantly lower than 

all other seasons (p < 0.01). Most sites’ average δ15N and δ18O values were not significantly 

different from each other. Site 5 had the highest δ15N average (16.0 ± 2.9‰) and site 17 had the 

lowest (10.1 ± 0.8‰) with the two being significantly different (p = 0.001). Site 5 had the 

highest δ18O average  (20.0 ± 4.8‰) and site 12 had the lowest  (13.3 ± 3.7‰) with the two 

being significantly different (p = 0.002). Plotting both δ15N and δ18O data in a dual isotope plot 

allows for preliminary differentiation between sources with similar or overlapping δ15N values 

although isotope fractionation must ultimately be accounted for when deducing source 

apportionment. The slope of the line (and the resulting δ15N:δ18O ratio) produced from the plot 

provides insight to the fractionation processes that are occurring (Figure 5.4) (Kendall et al., 

2007). Surface nitrate samples as a whole had a δ15N:δ18O ratio of 0.85.  

 Sample δ15N values were deployed in a SIAR mixing model to estimate source 

contributions. Overall, source contributions to surface water were estimated as septic/sewage (36 

± 17%), dog/gull guano (32 ± 18%), marine (23 ± 8%), and wet deposition (9 ± 4%) (Table 5.6). 

Septic/sewage was estimated as the primary source of NO3
- for all months except fall months, 

which showed dog waste/gull guano as the primary source of NO3
- , however fall months only 

had 3 samples with concentrations high enough for isotope analysis (Figure 5.5). Most sites also 

showed septic/sewage as the primary source, with the exceptions of S8, S9, and S12 where dog 

waste/gull guano was the primary source. For all months and sites, septic/sewage and dog 

waste/gull guano were the estimated dominant sources. 
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Figure 5.2. Surface water NO3- concentrations by month.  

   

 

Figure 5.3. Surface water NO3- concentrations by site.  
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Figure 5.4. δ15N-NO3- and δ18O-NO3- data of surface (blue triangle), pore (orange triangle), 

groundwater < 30‰ (green circle) and groundwater > 30‰ (maroon X’) samples from 

November 2021- April 2023. 

 

Table 5.6. Nitrate isotopic composition (‰) and % source contribution to nitrate in surface 

waters by season and site. SS, dg, wd, mar is the % contribution from sewage/septic dog 

waste/gull guano. wet deposition and Gulf of Mexico waters, respectively. 

Season/Site 

 

n = 

 

δ15N-

NO3
- 

δ18O-

NO3
- 

% 

ss 

% 

error 

% 

dg 

% 

error 

% 

wd 

% 

error 

%  

mar 

% 

error 

All 107 13.5 17.3 45 17 26 19 13 9 16 11 

Winter 54 12.6 17.4 38 17 30 21 14 10 18 12 

Spring 28 13.8 16.8 47 16 25 20 12 9 16 11 

Summer  22 15.4 18.4 58 15 19 15 11 7 13 9 

Fall 3 13.0 10.7 41 17 29 21 14 10 17 12 

1 9 14.0 16.5 48 17 25 19 12 8 15 11 

2 3 14.1 18.0 48 17 24 19 12 8 16 11 

4 7 16.0 17.5 61 14 17 14 10 7 12 9 

5 8 16.0 20.4 61 14 17 14 10 7 12 9 

6 2 12.2 17.6 36 16 30 20 15 10 20 13 

8 5 11.2 13.4 29 15 31 21 17 12 23 15 

9 4 10.3 13.4 24 14 31 20 19 12 26 18 

10 4 12.7 16.8 39 16 29 20 14 10 18 12 

11 6 12.8 18.1 39 16 29 20 14 10 18 12 

12 11 11.9 13.1 34 16 31 21 15 10 21 14 

14 8 14.4 18.1 51 16 22 18 12 8 15 11 

15 9 13.5 18.1 45 17 26 19 12 9 17 12 

16 8 14.7 22.9 45 17 26 19 13 9 16 11 

17 6 10.1 16.7 23 14 30 20 19 13 28 19 

               
         

             
         

               
         

                
         

   

 

  

  

  

  

  

  

  

  

  

                

       
    
           
           

           
             

 

        
 

   
       

               
   

                  
 

             
 

        
    

  
  
  
 

   
 

 

      
 

     
     



101 

 

18 6 14.1 17.6 48 17 24 19 12 8 16 11 

19 5 13.6 14.4 45 17 26 19 13 9 16 11 

20 7 14.2 18.9 49 16 24 19 12 8 15 10 

 

 

 
Figure 5.5. Surface water NO3- estimated source % contributions throughout duration of 

sampling and for each season.  

5.4.1.2. Nitrate Porewater 

The overall average porewater NO3
- concentration was 4.3 ± 7.1 µM (n=192). There was 

significant difference between winter (7.6 ± 12.5 µM) and fall (3.6 ± 2.5 µM) (p = 0.03) but his 

was primarily due to an outlier average in January 2023 (20.3 ± 20.2 µM) similar to the trend 

seen in surface waters (Figure 5.6). Average concentration differences across porewater sites 

were mostly insignificant with sites 9, 10 and 19 being observably higher than the average 

(Figure 5.7). 

Average δ15N-NO3
- values were 14.7 ± 4.3‰ and average δ18O-NO3

- values were 12.9 ± 

5.7‰ (n = 77). Season δ15N and  δ18O values were not significantly different with the exception 

of fall (13.2 ± 2.3‰, 9.7 ± 4.0‰) being significantly lower than summer (16.3 ± 2.7‰, 14.6 ± 

4.3‰)(p < 0.009). δ15N value averages were lowest at site 8 (11.6 ± 2.6‰) and highest at site 2 

(17.3 ± 3.4‰). Samples had a δ15N:δ18O slope of 1.17 (Figure 5.4). Overall, isotope mixing 

models estimate source contributions to porewater were dog waste/gull guano (27 ± 20%), 

septic/sewage (42 ± 17%), soil/marine (18 ± 12%), and wet deposition (14 ± 9%) (Table 5.7). 

Septic/sewage was consistently the primary source with it being equal to dog/gull in fall (Figure 

5.8). For all sites septic/sewage were the estimated dominant sources with the exceptions of sites 

8 and 18 where dog/gull was the primary source. 

                                          

             

MarineWet De Dog/gullSe /Se  18O-NO3
- 15N-NO3

-

16 ± 11%13 ± 9%26 ± 19%45 ± 17%17.3 13.5 All

18 ± 12%14 ± 10%30 ± 21%38 ± 17%17.4 12.6 Winter

16 ± 11%12 ± 9%25 ± 20%47 ± 16%16.8 13.8 Spring

13 ± 9%11 ± 7%19 ± 15%58 ± 15%18.4 15.4 Summer

17 ± 12%14 ± 10%29 ± 21%41 ± 17%10.7 13.0 Fall
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Figure 5.6. Porewater NO3- concentrations by month.  

 

Figure 5.7. Porewater NO3- concentrations by site.  
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Table 5.7. Nitrate isotopic composition (‰) and % source contribution to nitrate in pore waters 

by season and site. SS, dg, wd, soil/marine is the % contribution from sewage/septic dog 

waste/gull guano. wet deposition and Gulf of Mexico waters, respectively. 

Season/Site 

 

n = 

 

δ15N-

NO3
- 

δ18O-

NO3
- 

% 

ss 

% 

error 

% 

dg 

% 

error 

% 

wd 

% 

error 

%  

mar 

% 

error 

All 77 14.7 12.9 42 17 27 20 14 9 18 12 

winter 32 14.0 12.5 37 17 30 21 15 10 19 13 

spring 16 15.3 13.7 45 17 26 20 13 9 16 11 

summer  19 16.0 14.6 51 16 23 18 12 8 15 10 

fall 10 13.2 9.7 31 16 31 21 16 11 22 15 

2 9 17.3 16.0 58 14 18 14 11 7 13 9 

4 9 16.8 14.9 56 15 19 15 11 7 14 9 

5 7 15.0 15.4 43 17 27 20 13 9 17 12 

8 8 11.6 9.1 22 13 30 20 20 13 29 19 

9 7 13.7 11.4 34 16 31 21 15 10 20 14 

10 8 13.9 10.4 36 17 30 21 15 10 20 14 

11 8 14.1 11.2 37 17 29 21 14 10 20 13 

14 1 15.9 23.3 50 16 24 18 12 8 15 10 

15 7 13.6 11.6 33 16 31 21 15 11 21 14 

16 5 15.3 15.7 45 17 26 20 13 9 16 11 

18 2 12.8 11.1 29 15 31 21 17 11 24 16 

19 6 15.1 13.0 44 17 27 20 13 9 17 11 

 

 

Figure 5.8. Porewater NO3- estimated source % contributions throughout duration of sampling 

and for each season.  

5.4.1.3. Nitrate Groundwater 

 Overall, average NO3
- concentrations of wells were 34.4 ± 113.5 µM (n = 207). 

However, three sites were significantly higher than the others (W1, W9, and W13; these sites 

will thus be referred to as “high NO3
- wells” for the purpose of comparison), and their average 

                                        

           

MarineWet De Dog/gullSe /Se  18O-NO3
- 15N-NO3

-

18 ± 12%14 ± 9%27 ± 20%42 ± 17%12.9 14.7 All

19 ± 13%15 ± 10%30 ± 21%37 ± 17%12.5 14.0 Winter

16 ± 11%13 ± 9%26 ± 20%45 ± 17%13.7 15.3 Spring

15 ± 10%12 ± 8%23 ± 18%51 ± 16%14.6 16.0 Summer

22 ± 15%16 ± 11%31 ± 21%31 ± 16%9.7 13.2 Fall
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NO3
- concentrations were 115.4 ± 197.6 µM (n = 53). (Figure 5.10). The rest of the wells had 

average NO3
- concentrations of 6.0 ± 32.9 µM (n = 154). For these high concentration wells, 

winter had the significantly highest concentrations (223.7 ± 316.6 µM), while summer had the 

significantly lowest (33.0 ± 26.8 µM) (ANOVA) (Figure 5.9). For the other wells, winter had the 

significantly highest concentrations (13.2 ± 58.9 µM) while fall had the lowest (1.1 ± 0.9 µM). 

The overall average isotope composition of the groundwater was δ15N = 29.3 ± 14.3‰ 

and δ18O = 20.5 ± 6.3‰ (n = 78). It is important to note here the “n” sample number since only 

samples with high enough concentrations were analyzed. The isotopic composition of the three 

high NO3
- wells were significantly different than the rest of the sites. High NO3

- well averages 

were δ15N = 36.6 ± 12.7‰ and δ18O = 18.7 ± 4.8‰ while the rest of the wells average was δ15N 

= 20.7 ± 10.9‰ and δ18O= 22.7 ± 7.2‰. For both groups of wells, there was no significant 

difference among seasons. The slope of the δ15N:δ18O line of high concentration and remaining 

wells was 0.13 and 0.89, respectively (Figure 5.4).  

For all months and sites, septic/sewage was estimated as the dominant sources. Source 

contributions estimates were similar between high and low concentration wells and the overall 

contribution among wells was dog waste/gull guano (15 ± 12%), wet deposition (10 ± 6%), 

septic/sewage (63 ± 13%), and soil (12 ± 9%) (Table 5.8) (Figure 5.11).  

   

 

Figure 5.9. Groundwater average NO3- concentrations by month. 
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Figure 5.10. Groundwater average NO3- concentrations by site and pie chart of source 

apportionment for high nitrate concentration wells. 

 

Table 5.8. Nitrate isotopic composition (‰) and % source contribution to nitrate in ground 

waters by season and site. SS, dg, wd, soil is the % contribution from sewage/septic dog 

waste/gull guano. wet deposition and soil, respectively. 

Season/Site 

 

n = 

 

δ15N-

NO3
- 

δ18O-

NO3
- 

% 

ss 

% 

error 

% 

dg 

% 

error 

% 

wd 

% 

error 

%  

soil 

% 

error 

All 78 29.3 20.5 63 13 15 12 10 6 12 9 

winter 23 32.0 22.2 69 12 13 10 8 6 10 8 

spring 24 27.3 18.5 45 17 26 20 12 9 17 13 

summer  19 26.8 23.2 71 11 12 9 8 6 10 7 

fall 12 32.1 16.9 67 12 13 10 9 6 11 8 

1 17 46.7 20.0 73 10 11 8 7 5 9 7 

2 9 22.2 19.5 52 16 21 17 11 8 15 11 

3 6 14.5 19.9 38 17 29 21 13 9 20 15 

4 1 21.5 21.5 75 10 10 7 7 5 8 6 

5 2 14.7 20.0 40 17 27 17 14 10 20 14 

7 2 20.3 23.7 72 11 11 8 8 5 9 7 

8 2 23.8 24.8 81 8 7 6 5 4 6 5 

9 12 35.5 17.4 49 17 23 19 12 8 16 12 

10 6 19.5 23.5 69 12 13 10 8 6 10 8 

11 1 29.1 29.1 88 5 4 3 3 2 4 3 

13 13 24.5 18.0 53 16 21 17 11 8 15 11 

14 7 24.9 23.2 75 10 10 7 7 5 8 6 
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Figure 5.11. Ground water NO3- estimated source % contributions throughout duration of 

sampling and for each season.  

 

5.4.2. Ammonium Spatial and Temporal Variations 

5.4.2.1. Ammonium Surface Water 

The average NH4
+ concentration of surface water samples was 4.9 ± 9.4 µM (n = 300) . 

Averages were lowest in the summer (2.2 ± 2.0 µM) and highest in winter (3.8 ± 3.8 µM) with 

the averages being significantly different (p = 0.007) (Figure 5.12). There were no significant 

differences across sites with the exception of S1 (11.4 ± 13.4 µM) being significantly higher than 

a few sites, but it should be noted that this is the only bay surface sample as opposed to all others 

being Gulf of Mexico surface sites (Figure 5.13).  

Average δ15N-NH4
+ values were 13.1 ± 6.1‰ (n = 66). There is less data due to the 3 µM 

threshold for isotopic analysis and the minimal data across all surface sites does not allow for a 

systematic comparison across sites. There are no significant differences across seasons except 

fall 16.7 ± 4.0‰ is significantly higher than winter (11.2 ± 6.3‰) (p = 0.012). 

 

                                        

           

SoilWet De Dog/gullSe /Se  18O-NO3
- 15N-NO3

-

12 ± 9%10 ± 6%15 ± 12%63 ± 13%20.5 29.3 All

10 ± 8%8 ± 6%13 ± 10%69 ± 12%22.2 32.0 Winter

17 ± 13%12 ± 9%26 ± 20%45 ± 17%18.5 27.3 Spring

10 ± 7%8 ± 6%12 ± 9%71 ± 11%23.2 26.8 Summer

11 ± 8%9 ± 6%13 ± 10%67 ± 12%16.9 32.1 Fall
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Figure 5.12. Surface water average NH4+ concentrations by month. 

 

 
 

Figure 5.13. Surface water average NH4+ concentrations by site.  
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5.4.2.2. Ammonium Porewater 

The average NH4
+ concentration of porewater samples was 27.7 ± 40.6 µM (n = 192).The 

three highest porewater sites (i.e., 14, 16, 19) have a significantly higher average concentration 

(49.9 ± 67.3 µM) than average of the rest of the sites’ average concentration (20.7 ± 23.6 µM) (p 

= 0.00002) (Figure 5.15). There were no significant differences between seasons except fall 

(18.6 ± 26.4 µM) was significantly lower than spring (31.5 ± 28.3 µM) (p = 0.03) (Figure 5.14). 

Average δ15N-NH4
+ values were 10.6 ± 6.3‰ (n = 138). There was no significant 

difference between sites except between the highest (site 9: 12.9 ± 4.0‰) and the lowest site (site 

14: 7.0 ± 8.0‰) (p = 0.01). There was no significant difference among seasons except spring is 

significantly lower than all other seasons (7.8 ± 7.3‰) (p < 0.02). 

 

 

Figure 5.14. Porewater average NH4+ concentrations by month.  
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Figure 5.15. Porewater average NH4+ concentrations by site.  

 

5.4.2.3. Ammonium Groundwater 

The overall average NH4
+ concentrations of groundwater samples were 158.9 ± 345.2 

µM. The outlier of 3707 µM for the April W11 sample was removed during spatial and temporal 

analysis (Grubbs test, p < 0.01). The well concentrations fell into three tiers with the W5 and W7 

average (507.8 ± 335.8 µM) being significantly higher than the average for wells 3, 10 and 11 

(118.4 ± 108.1 µM) and those wells being significantly higher than wells 1, 2, 4, 8, 9, 13, and 14 

(41.7 ± 123.4 µM) (ANOVA; p < 0.0001) (Figure 5.17). The highest tier had high concentrations 

in the summer (726.1 ± 580.0 µM) as did the second tier (179.4 ± 210.4 µM) but summer 

concentrations were not significantly different from other seasons (Figure 5.16). The lowest 

concentration tier had very significantly higher concentrations in the summer (156.1 ± 264.2 

µM), specifically driven by the month of June. 

Average δ15N-NH4
+ values were 10.9 ± 8.3‰ (n = 116). Spring (7.6 ± 7.8‰) was 

significantly lower than all other seasons (p < 0.02) and winter (10.3 ± 9.4‰) is significantly 

lower than fall (14.9 ± 6.2‰)(p = 0.02). δ15N-NH4
+ values for the three tiers were 6.8 ± 5.1‰ 

(highest concentration tier), 10.5 ± 8.8‰ (next highest), 15.0 ± 8.1‰ (lowest) with all three tiers 

being significantly different (p < 0.05). 
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Figure 5.16. Groundwater average NH4+ concentrations by month. *Outlier 3707 µM at well 

11 not pictured. 

 

 

Figure 5.17. Groundwater average NH4+ concentrations by site. *Outlier 3707 µM at well 11 

not pictured. 
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5.4.3. DON Spatial and Temporal Variations 

5.4.3.1. DON Surface Water 

The average surface water DON concentrations were 7 ± 5 µM (n = 300). Fall (10 ± 4 

µM) and summer (9 ± 4 µM) had significantly higher concentrations than winter (5 ± 5 µM) and 

spring (7 ± 6 µM) p < 0.01) (Figure 5.18). Site 1 was the only bay surface water site and had the 

highest average concentration (12 ± 9 µM). Surface water sites 14 and 2 were the highest (9 ± 6 

µM)  and lowest (4 ± 4 µM) concentrations of Gulf surface water, respectively but were not 

significantly different (Figure 5.19).  

Surface water samples had average δ15N-DON isotopic values of 5 ± 5‰ (n = 208). 

Summer values (7 ± 3‰) are significantly higher than fall (4 ± 3‰) and winter (4 ± 4‰) (p < 

0.0001). Most sites had average values which were not significantly different but the highest 

value site 2 (7 ± 12‰) and lowest value site 6 (2 ± 3‰) were significantly different than several 

sites. 

 

 

Figure 5.18. Surface water average DON concentrations by month.  
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Figure 5.19. Surface water average DON concentrations by site. 

 

5.4.3.2. DON Porewater 

Average porewater DON concentrations were 7 ± 8 µM (n = 192). There were no 

significant differences between fall (8 ± 8 µM), winter (8 ± 10 µM), spring (7 ± 8 µM), and 

summer (7 ± 7 µM) seasons (Figure 5.20). Most sites had average concentrations which were 

not significantly different but the highest value site 10 (14 ± 13 µM) and lowest value site 15 (1 

± 2 µM) were significantly different than several sites (Figure 5.21) (p < 0.05). 

Porewater samples had average δ15N-DON isotopic values of 5 ± 5‰ (n = 113). There 

were no significant differences between seasons. Most sites had average values which were not 

significantly different but the highest value site 19 (8 ± 10‰) and lowest value site 15 (4 ± 3‰) 

were significantly different than several sites (p < 0.05). 
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Figure 5.20. Porewater average DON concentrations by month. Moving line shows averages. 

 
 

Figure 5.21. Porewater average DON concentrations by month site. 
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5.4.3.3. DON Groundwater 

Average DON groundwater concentrations were 21 ± 58 µM (n = 207). Well 

concentrations were separated into two tiers, with wells 5 and 7 having significantly higher 

average concentrations (48 ± 123 µM) than the other wells (15 ± 29 µM) ( p = 0.002) (Figure 

5.23). Despite winter (29 ± 71 µM) and spring (30 ± 77 µM) averages being noticeably higher 

than summer (7 ± 10 µM) and fall (8 ±10 µM), the large range in each season leads to no 

significant difference across seasons. (Figure 5.22). The wide ranges are driven by high 

concentrations in some wells in December 2022 and April 2023. 

The average δ15N-DON values of groundwater samples were 3 ± 11‰ (n = 92). Many 

samples did not have high enough concentrations for isotope analysis (> 3 µM). In addition, 

samples that had [NO3
-]/[TDN] over 80% were not included in isotope analysis due to enhanced 

error in δ15N-DON back calculation at these ratios. Although winter values were noticeably 

higher, the range in values led there to be no significant difference across seasons. Site 4 had the 

highest average value (9 ± 15‰) and site 11 had the lowest value (-3 ± 8‰) and were 

significantly different from each other p = 0.03. 

 

 

Figure 5.22. Groundwater average DON concentrations by month. 
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Figure 5.23. Groundwater average DON concentrations by site.  

 

5.4.4. Ancillary Data 

Nitrate, ammonium and dissolved organic nitrogen concentrations data were investigated 

with respect to ancillary measurements (e.g.,) Correlation matrix and p significance matrix are 

included as Table 5.9, Table 5.10, Table 5.11, Table 5.12, Table 5.13, and Table 5.14 and 

organized by matrix – surface water, pore water, and groundwater. 

 

Table 5.9. Correlation matrix for surface water. Numbers in each cell represent the correlation 

coefficient “R” and a positive or negative relationship. DTW is depth to water and DO is 

dissolved oxygen. 

 

NO3
- 

 

NO2
-       

 

NH4
+ 

 
δ15N-

NO3
- 

δ18O-

NO3
- 

δ15N-

NH4
+ 

δ15N-

DON 

DON  

 

Temp 

 

DO 

 

Salinity 

 

NO3
- 1.00           

NO2
- 0.07 1.00          

NH4
+ 0.10 0.17 1.00         

δ15N-NO3
- -0.03 0.06 0.003 1.00        

δ18O-NO3
- -0.22 -0.22 -0.04 0.54 1.00       

δ15N-NH4
+ -0.75 -0.30 0.19 0.20 0.07 1.00      

δ15N-DON 0.04 0.69 0.16 0.06 -0.14 0.38 1.00     

DON  -0.14 -0.05 -0.24 0.09 -0.01 -0.19 0.02 1.00    

Temp -0.16 0.08 -0.13 0.29 -0.02 0.06 0.20 0.19 1.00   

DO 0.16 0.00 0.14 -0.31 -0.13 -0.12 -0.17 0.03 -0.63 1.00  

Sal -0.19 -0.14 -0.26 0.08 0.11 0.24 0.08 -0.16 0.28 -0.52 1.00 

pH 0.03 -0.01 -0.03 -0.17 -0.17 0.13 -0.07 0.15 -0.24 0.40 -0.12 
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Table 5.10. Probability (p) value correlation significance matrix for surface water. Numbers in 

each cell represent the p-value of the correlation. Numbers in each cell represent the p-value of 

the correlation. Light blue to dark blue values indicate significant negative correlations 

increasing in magnitude with darkness. Light purple to dark purple values indicate significant 

positive correlations increasing in magnitude with darkness. 

 

NO3
- 

 

NO2
- 

 

NH4
+ 

 
δ15N-

NO3
- 

δ18O-

NO3
- 

δ15N-

NH4
+ 

δ15N-

DON 

DON  

 

Temp 

 

DO 

 

Salinity 

 

NO3
-            

NO2
- 0.2200           

NH4
+ 0.0900 0.0033          

δ15N-NO3
- 0.7600 0.3030 0.9570         

δ18O-NO3
- 0.0220 0.0220 0.6810 

< 

0.0001        

δ15N-NH4
+ 

< 

0.0001 0.0136 0.1240 0.1047 

0.574

0       

δ15N-DON 0.5700 

< 

0.0001 0.0220 0.5370 

0.148

0 0.0015      

DON 0.0160 0.3900 

< 

0.0001 0.3540 

0.918

0 0.1240 0.7770     

Temp 0.0058 0.1700 0.0250 0.0020 

0.827

0 0.6300 0.0041 0.0010    

DO 0.0058 1.0000 0.0159 0.0011 

0.180

0 0.3330 0.0151 0.6070 

< 

0.0001   

Sal 0.0010 0.0159 

< 

0.0001 0.4110 

0.257

0 0.0504 0.2550 0.0058 

< 

0.0001 

< 

0.0001  

pH 0.6850 0.8920 0.6850 0.0786 

0.078

6 0.2940 0.2680 0.3440 0.0010 

< 

0.0001 0.1037 

 

Table 5.11. Correlation matrix for pore water. Numbers in each cell represent the correlation 

coefficient “R” and a positive or negative relationship. DTW is depth to water and DO is 

dissolved oxygen. 

 
NO3

- 

 

NO2
- 

 

NH4
+ 

 
δ15N-

NO3
- 

δ18O-

NO3
- 

δ15N-

NH4
+ 

δ15N-

DON 

DON 

 

Temp 

 

DO 

 

Salinity 

 

NO3
-(µM) 1.00           

NO2
-(µM) 0.36 1.00          

NH4
+(µM) -0.20 -0.15 1.00         

δ15N-NO3
- -0.11 -0.05 0.32 1.00        

δ18O-NO3
- -0.25 -0.16 0.35 0.86 1.00       

δ15N-NH4
+ -0.06 0.28 -0.03 -0.39 -0.50 1.00      

δ15N-DON 0.33 0.17 -0.19 0.01 -0.10 0.10 1.00     

DON 

(µM) 
-0.06 0.03 -0.07 0.00 -0.07 -0.18 0.23 1.00    

Temp -0.19 0.15 -0.10 0.13 0.10 -0.05 0.00 0.08 1.00   

DO 0.28 -0.02 -0.32 -0.46 -0.44 0.00 -0.02 -0.10 -0.25 1.00  

Sal -0.04 0.12 -0.22 -0.05 -0.10 0.09 -0.03 0.09 0.37 0.14 1.00 

pH 0.03 -0.17 -0.10 -0.30 -0.35 -0.18 -0.09 0.16 -0.12 0.12 -0.16 

 

Table 5.12. Probability (p) value correlation significance matrix for pore water. Numbers in each 

cell represent the p-value of the correlation. Numbers in each cell represent the p-value of the 

correlation. Light blue to dark blue values indicate significant negative correlations increasing 

in magnitude with darkness. Light purple to dark purple values indicate significant positive 

correlations increasing in magnitude with darkness. 
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NO3
- 

 

NO2
- 

 

NH4
+ 

 
δ15N-

NO3
- 

δ18O-

NO3
- 

δ15N-

NH4
+ 

δ15N-

DON 

DON  

 

Temp 

 

DO 

 

Salinit

y 

 

NO3
-            

NO2
- 

<0.00

01           

NH4
+ 0.0062 0.0410          

δ15N-NO3
- 0.3422 0.6680 

0.00

48         

δ18O-NO3
- 0.0294 0.1674 

0.00

19 

<0.000

1        

δ15N-NH4
+ 0.4878 0.0010 

0.72

98 0.0005 

<0.000

1       

δ15N-DON 0.0004 0.0758 

0.04

68 0.9370 0.3901 0.2986      

DON 0.4159 0.6844 

0.34

24 0.9713 0.5479 0.0367 0.0156     

Temp 0.0094 0.0410 

0.17

45 0.2630 0.3901 0.5647 0.9611 0.2777    

DO 

<0.00

01 0.7864 

<0.0

001 

<0.000

1 

<0.000

1 0.9826 0.8357 0.1745 0.0006   

Sal 0.5878 0.1028 

0.00

26 0.6680 0.3901 0.2992 0.7557 0.2218 

<0.000

1 0.0567  

pH 0.6844 0.0204 

0.17

45 0.0085 0.0019 0.0367 0.3498 0.0291 0.1028 0.1028 0.0291 

 

Table 5.13. Correlation matrix for groundwater. Numbers in each cell represent the correlation 

coefficient “R” and a positive or negative relationship. DTW is depth to water and DO is 

dissolved oxygen. 

 

NO3
- 

 

NO2
- 

 

NH4
+ 

 
δ15N-

NO3
- 

δ18O-

NO3
- 

δ15N-

NH4
+ 

δ15N-

DON 

DON  

 

DTW Temp 

 

DO 

 

Sal 

 

NO3
- 1.00            

NO2
- 0.42 1.00           

NH4
+ -0.11 -0.11 1.00          

δ15N-NO3
- 0.18 0.01 -0.39 1.00         

δ18O-NO3
- -0.35 -0.30 0.13 0.22 1.00        

δ15N-NH4
+ 0.18 0.00 -0.12 0.00 -0.24 1.00       

δ15N-DON 0.25 0.08 -0.13 0.22 -0.18 -0.06 1.00      

DON -0.01 0.02 -0.06 -0.17 -0.15 -0.39 0.05 1.00     

DTW 0.10 0.03 -0.21 0.62 -0.11 0.37 0.18 -0.19 1.00    

Temp -0.12 -0.12 -0.04 -0.07 -0.03 0.26 0.07 -0.13 0.18 1.00   

DO -0.05 -0.14 -0.06 0.21 0.04 0.12 -0.07 0.01 0.26 0.12 1.00  

Sal -0.13 -0.09 0.34 -0.08 0.24 -0.30 -0.20 0.11 -0.36 0.01 0.01 1.00 

pH 0.14 -0.03 -0.04 0.14 0.03 -0.18 -0.16 -0.06 0.14 -0.08 -0.02 -0.05 

 

Table 5.14. Probability (p) value correlation significance matrix for groundwater. Numbers in 

each cell represent the p-value of the correlation. Numbers in each cell represent the p-value of 

the correlation. Light blue to dark blue values indicate significant negative correlations 

increasing in magnitude with darkness. Light purple to dark purple values indicate significant 

positive correlations increasing in magnitude with darkness. 

 

NO3
- 

 

NO2
- 

 

NH4
+ 

 
δ15N-

NO3
- 

δ18O-

NO3
- 

δ15N-

NH4
+ 

δ15N-

DON DON 

DTW Tem

p 

 

DO 

 

Sal 

 

NO3
-             
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NO2
- 

<0.00

01            

NH4
+ 0.1090 0.1224           

δ15N-NO3
- 0.1148 0.9182 0.0004          

δ18O-NO3
- 0.0017 0.0076 0.2566 0.0529         

δ15N-NH4
+ 0.0542 0.9999 0.2015 0.9999 0.0343        

δ15N-DON 0.0157 0.4459 0.2142 0.0529 0.1148 0.5241       

DON  0.9148 0.7756 0.3916 0.1367 0.1899 

<0.00

01 0.6341      

DTW 0.1372 0.6701 0.0026 

<0.00

01 0.3377 

<0.00

01 0.0843 

0.006

5     

Temp 0.0842 0.0858 0.5681 0.5425 0.7943 0.0050 0.5049 

0.062

5 

0.009

6    

DO 0.5005 0.0447 0.3916 0.0650 0.7281 0.2015 0.5049 

0.886

6 

0.000

2 

0.085

8   

Sal 0.0636 0.1983 

<0.00

01 0.4863 0.0343 0.0011 0.0546 

0.115

5 

<0.00

01 

0.886

6 0.886  

pH 0.1094 0.6686 0.5681 0.2215 0.7943 0.0542 0.1255 

0.391

6 

0.044

7 

0.198

3 0.776 0.475 

 

5.5. Discussion 

5.5.1. Nitrate 

5.5.1.1. Nitrate surface water  

The average NO₃⁻ concentrations in surface water samples were 3.4 ± 5.2 µM. While few 

studies have extensively measured nutrients along the shorelines of barrier islands, these 

concentrations are slightly higher than those observed offshore in the northern Gulf of Mexico 

(1.46 ± 6.04 µM; Cardona et al., 2016) and fall within the range of global ocean (0–35 µM) and 

coastal ocean concentrations (0–5 µM; Garcia et al., 2024). Seasonal trends revealed 

significantly higher concentrations during winter (5.2 ± 7.2 µM), likely due to reduced 

assimilation. However, the δ¹⁵N-NO₃⁻ to δ¹⁸O-NO₃⁻ slope of 1.04 suggests active assimilation 

and/or denitrification processes during this period. Marine nitrification, which tends to increase 

in winter as phytoplankton experience greater light limitation and create less competition for 

nitrate, may contribute to this signal (Zakem et al., 2018). However, the higher nitrate 

concentrations observed in winter are more likely attributable to source loading. November and 

December 2022 experienced relatively high precipitation (~20 cm), which may have resulted in 

nitrate input via terrestrial or groundwater sources. A lag in delivery from groundwater could 

explain the distinct peak in nitrate concentrations observed in January 2023 (14.7 ± 13.8 µM). In 

other seasons, lower nitrate concentrations likely resulted from increased assimilation due to 

higher phytoplankton activity, as well as enhanced denitrification. Warmer temperatures and 

reduced dissolved oxygen (DO) levels, which create prime conditions for denitrification, likely 

contributed to these trends. Notably, nitrate concentrations were negatively correlated with both 

DO and temperature (p = 0.006). DO levels were significantly lower during spring, summer, and 

fall, with the lowest values observed in summer. Although nitrification can occur in the euphotic 

zone alongside these processes and potentially decouple the expected ~1:1 ratio from 

denitrification and assimilation (Casciotti and Buchwald, 2012; Granger and Wankel, 2016), the 

combination of low DO and low nitrate concentrations in warmer months likely dominates. This 

is consistent with reports of marine denitrification slopes as low as 0.5 in such conditions.  

Surface water sites were statistically similar for the most part (average 3.2 µM) but sites 

1 12 14, 19, and 14 had the highest average NO3
- concentrations. Site 1 is the only site on the 
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Trinity Bay is in a more densely populated area and is subject to loading from the San Jacinto 

River and Houston Ship channel. The other high sites are adjacent to channels accessing the Gulf 

of Mexico. Dredging can weaken NO3
- removal from a system for several years (Dong Jing et 

al., 2013). Multiple studies have confirmed increased total dissolved solids and NO3
- 

concentrations after dredging has occurred, where dredged sediment can release heavy metal and 

organic contaminants and bury benthic organisms, which can cause long-term effects like 

eutrophication and pollution (Zhang et al., 2010; Liu et al., 2019). Inlets themselves exchange 

nutrients with the ocean and can deliver move concentrated nutrients to the coastal ocean. 

δ¹⁵N values were higher in spring and summer, with the source apportionment model 

indicating a greater relative contribution of septic and sewage loading during these seasons. This 

is consistent with increased population density in tourist destinations during spring and summer, 

which likely strains septic and wastewater infrastructure. Overburdened or malfunctioning 

systems may contribute to elevated nitrate loading during these high-tourism periods. 

Interestingly, contributions from dog manure and gull guano were highest in winter. According to 

the Houston Audubon Society, fall migration along the Texas upper coast begins as early as July 

and continues through November for shorebirds and gulls, many of which overwinter in this 

region (Houston Audubon Society, 2023). The elevated contribution of dog and gull waste during 

winter likely reflects the culmination of migration and the presence of overwintering birds that 

make the Texas Coast their temporary home. Sites 4 and 5 exhibited the highest average 

percentage of septic/sewage contribution. Although linking inland activities to adjacent offshore 

water quality is challenging due to the heterogeneity of groundwater flow, it is notable that these 

sites are in direct transects that include a condominium complex and a large RV park, both of 

which utilize septic systems. Sites 6 through 12 and site 17 showed the highest relative 

contributions from dog and gull waste (~30%), suggesting stretches of beach where bird 

populations may be concentrated. Previous studies have shown that dogs and gulls can contribute 

significant amounts of fecal bacteria to surface and pore waters, an issue that has been 

increasingly observed along beaches in California and Florida (Goodwin et al., 2016; Converse 

et al., 2012). Despite these contributions, nitrate concentrations at these sites generally remain 

within the range of typical marine levels, suggesting that contamination from these sources may 

not be severe. 

 

Table 5.15. Seasonal surface, pore, and groundwater nitrate δ15N vs δ18O plot characteristics 

including number of samples (n), correlation coefficient (R), probability value (p) and likely 

nitrate processes associated with these characteristics. 

Season Slope n R p Primary processes indicated  

 

Surface water 
Fall Not available (n = 3) 

Winter 1.04 54 0.59 <0.0001 denitrification/assimilation/nitrification 

Spring 0.76 29 0.73 <0.0001 denitrification/nitrification/assimilation 

Summer 0.58 22 0.52 0.0091 denitrification/nitrification/assimilation 

Porewater 
Fall 1.18 10 0.68 0.015 denitrification/DNRA 

Winter 1.38 32 0.90 <0.0001 denitrification/DNRA 

Spring 0.77 16 0.85 <0.0001 denitrification/nitrification 

Summer 1.5 19 0.91 <0.0001 denitrification/DNRA 

Groundwater high concentrations 
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Fall 0.25 10 0.85 0.0005 anammox; denitrification/nitrification 

Winter 0.25 12 0.71 0.0044 anammox; denitrification/nitrification 

Spring 0.32 11 0.87 <0.0001 anammox; denitrification/nitrification 

Summer -0.12 9 0.39 0.2357 anammox; denitrification/nitrification 

Groundwater low concentrations 
Fall Not available (n = 2) 

Winter 0.95 11 0.82 0.0003 denitrification/nitrification 

Spring 0.33 13 0.50 0.0577 nitrification/denitrification 

Summer 0.24 11 0.56 0.0515 nitrification/denitrification 

 

5.5.1.2. Nitrate porewater  

The overall average porewater NO3
- concentration was 4.3 ± 7.1 µM, slightly higher than 

the surface water average of 3.4 ± 5.2 µM. Elevated NO3
- concentrations in porewater relative to 

surface waters are often attributed to the nitrification of NO3
- derived from re-mineralized NH4

+ 

in sediments, which is subsequently assimilated in surface waters (Ahrens et al., 2020). The 

observed negative correlation between NO3
- and NH₄⁺ (p = 0.0062) supports this process, as 

NH4
+decreases while NO3

- increases. Additionally, the strong correlation between NH4
+ and 

dissolved oxygen (DO; p < 0.0001) in porewater further suggests active nitrification. However, 

the similarity in NO3
-concentrations between porewater and surface water points to continued 

circulation and exchange between these two reservoirs, particularly in the dynamic shore break 

zone where samples were collected. This is further corroborated by the δ15N-NO3
- values in 

porewater (14.7 ± 4.3‰), which were closely aligned with those in surface water (13.5 ± 3.2‰).  

As in surface waters, porewater NO3
- concentrations were highest in winter (7.6 ± 12.5 

µM). This may be linked to nutrient inputs from groundwater discharge, driven by high rainfall 

in November and December 2022.  

  Interestingly the slope of δ15N and δ18O in fall winter and summer was higher than the 

expected denitrification associated slopes which normally do not exceed 1. Dissimilatory nitrate 

reduction to ammonium (DNRA) may be a contributing factor, particularly under more anoxic 

conditions in sandy coastal sediments, where it can account for over 50% of total NO₃⁻ reduction 

(Wankel et al., 2007; Hellemann et al., 2020). However, the isotope effects of DNRA remain 

uncertain (Inamdar et al., 2024). A similar competition between nitrification and denitrification 

in marine systems can produce Δδ18O:Δδ15N slopes greater than 1, particularly when the 

difference between the δ18O of subsurface NO3
- and seawater is small. This occurs because, at 

any given fractionation factor, the δ18O of nitrified NO3
- is greater than the δ18O of NO3

- removed 

by denitrification (Granger and Wankel, 2016). This may also be the case when the δ18O of the of 

DNRA-processed NO3
- is greater than the δ18O of NO3

- removed by denitrification. In summer, 

however, the slope was below 1 (0.77), likely reflecting a shift toward marine denitrification as 

the dominant process. The lack of significant differences in NO₃⁻ concentrations across 

porewater sites suggests general homogeneity in porewater conditions or continuous mixing with 

well-circulated Gulf waters. 

δ15N values were lowest in fall and winter (13.2 ± 2.3‰ and 14.0 ± 6.8‰, respectively) 

and highest in summer (16.3 ± 2.7‰). These seasonal trends align with surface water patterns, 

where higher septic/sewage contributions in summer are associated with increased human 

populations, and elevated dog/gull contributions in fall and winter reflect migratory patterns. 

Sites 8, 9, 10, 11, and 15 exhibited the highest average dog/gull contributions (~30%), which 

were consistent with co-located surface water sampling results. Additionally, porewater site 4 

showed the highest septic/sewage contribution (60%), with co-located surface water displaying 
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similar source contributions. This further underscores the potential for continued nitrate 

exchange between surface and pore waters. The δ15N source contribution mixing model indicates 

that septic/sewage was the primary nitrogen source, both spatially and temporally, across the 

study region. This suggests that wastewater mitigation strategies could be the most effective 

approach for reducing NO3
- loading in the area. 

5.5.1.3. Nitrate groundwater 

The average NO3
- concentration across all wells was 34.4 ± 113.5 µM; however, three 

wells (W1, W9, and W13) exhibited significantly higher concentrations, averaging 115.4 ± 197.6 

µM, compared to the remaining wells, which averaged just 6.0 ± 32.9 µM. According to the 

EPA, low levels of NO₃⁻ occur naturally in groundwater, but concentrations above 16 µM are 

indicative of human activities, while levels exceeding 48.4 µM suggest contamination 

(Chaudhuri et al., 2012). The EPA’s maximum contaminant level (MCL) for NO3
- in drinking 

water is 161.3 µM, above which groundwater is considered unsafe for consumption and poses a 

risk for methemoglobinemia (Powlson et al., 2008). This is particularly concerning in regions 

reliant on private wells for water, as they are not federally regulated, especially in rural areas 

with poor water quality (Knobeloch et al., 2000). The three high-concentration wells exceeded 

the MCL. While these wells are shallow and not intended for personal use, their contamination 

raises concerns for nearby private well owners, who should exercise caution. Interestingly, the 

high-concentration wells showed significantly elevated NO3
- levels in winter, with the lowest 

concentrations observed in summer. This seasonal trend may be rainwater driven, as seen with 

elevated porewater and surface water NO3
- concentrations during winter. The extremely high 

concentrations in January 2023 likely reflect groundwater flow influenced by heavy rainfall in 

November and December 2022. Well 1, located inland along the bay coastline and serviced by 

municipal sewage, displayed high NO3
-levels following rain events. This may suggest the 

municipal infrastructure's inability to handle heavy rainfall, potentially indicating leakage or 

other vulnerabilities. Wells W9 and W13, situated near septic fields, may have experienced septic 

system saturation from the heavy rains, compromising drainage and reducing the septic system’s 

ability to effectively treat sewage.  

Plotting δ15N vs. δ18O data revealed two distinct processing categories in the wells: one 

associated with δ15N values over 30‰ and another with δ¹⁵N values below 30‰. Samples with 

δ15N values under 30‰ showed no significant correlation between ln(NO3
-) and δ15N- NO3

-, but 

their δ15N vs. δ18O slope was 0.89, indicating a primarily denitrification-driven process. In 

contrast, samples with δ15N values over 30‰ had a very low δ15N vs. δ18O slope (0.13), 

suggestive of competing processes: nitrate production through oxidation and nitrate loss through 

reduction. 

Given the low DO levels in the wells (3.2 ± 2.1 mg/L), the oxidation process is likely 

dominated by anammox, a significant oxidation pathway in aquifers (Clark et al., 2008; Erler et 

al., 2008; Robertson et al., 2012; Granger and Wankel, 2016). Anammox can result in substantial 

fractionation, potentially explaining the high δ15N values. Brunner et al. (2013) proposed that 

nitrate production via anammox exhibits an inverse kinetic fractionation effect of -31‰. 

Furthermore, anammox processes can decouple oxygen and nitrogen isotopes (Dähnke et al., 

2015), which could explain the anomalously low δ15N vs. δ18O slope observed in the >30‰ 

samples. 

After correcting the well sample δ15N values for their respective processing isotope effects, 

these corrected values were incorporated into the isotope source apportionment model. Results 

indicated that sewage/septic systems were the primary nitrate source (~63%) across both high- 
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and low-concentration wells. Again, this suggests that wastewater mitigation strategies could be 

the most effective approach for reducing NO3
- loading in the area. 

5.5.2. Ammonium 

5.5.2.1. Surface water NH4
+ 

The average NH4
+ concentration in surface water samples was 4.9 ± 9.4 µM, notably 

higher than levels typically found in open ocean environments (approximately 1 µM). In such 

environments, NH4
+ is rapidly assimilated by primary producers or oxidized through nitrification 

almost as quickly as it is produced (Altabet, 2006). Seasonal trends in NH4
+ concentrations were 

observed, with the lowest averages in summer (2.2 ± 2.0 µM) and the highest in winter (3.8 ± 3.8 

µM), likely driven by changes in primary producer populations and associated assimilation. 

Spatially, no significant differences were observed across sites, except for S1, which had a high 

average concentration of 11.4 ± 13.4 µM. S1 is unique as it is located on Trinity Bay rather than 

the Gulf of Mexico. It is influenced by higher population densities, inputs from the San Jacinto 

River, and activities associated with the Houston Ship Channel.  

The average δ15N-NH4
+ value was 13.1 ± 6.1‰. Isotopic data for NH4

+ in surface waters 

are generally limited due to analytical challenges, but studies with sufficient NH4
+ concentrations 

for isotopic analysis suggest δ15N-NH4
+ values in marine environments typically range from 

+10‰ to +29‰. These elevated values, combined with low NH4
+ concentrations, often indicate 

fractionation from consumptive processes such as nitrification or ammonium assimilation 

(Sigman and Casciotti, 2001). Seasonal differences in δ15N-NH4
+ were minimal, except for fall 

(16.7 ± 4.0‰), which was significantly higher than winter (11.2 ± 6.3‰). The lower winter 

δ15N-NH4
+ values may reflect reduced fractionation due to a lack of uptake and nitrification 

activity during this period. 

5.5.2.2 Porewater NH4
+ 

Ammonium (NH4
+) was the dominant nitrogen species in porewater, with average 

concentrations of 27.7 ± 40.6 µM. This is consistent with findings from other barrier island 

studies, such as Ahrens et al. (2020), which reported porewater NH4
+ concentrations ranging 

from 0 to 163 µM. NH4
+ dominance in most anoxic sediment porewaters is attributed to the 

degradation of organic nitrogen through remineralization and dissimilatory nitrate reduction to 

ammonium (DNRA) (Zhao et al., 2023). Remineralized nutrients in porewater are subsequently 

nitrified and assimilated by primary producers in surface waters. Generally, fine sediments 

promote NH4
+generation due to their low oxygen levels and high organic matter content 

(USEPA). Porewater NH4
+ concentrations were significantly higher than those in surface waters. 

While this contrasts with the nitrate discussion, which suggested consistent recirculation between 

porewater and surface water, it may indicate high turnover rates of NH4
+ once in the water 

column. Three porewater sites (14, 16, and 19) exhibited higher average NH4
+ concentrations 

(49.9 ± 67.3 µM) compared to the remaining sites (20.7 ± 23.6 µM). These sites' proximity to 

channels likely exposes them to direct nutrient inputs. Seasonally, NH4
+ concentrations were 

highest in summer and spring, potentially due to increased temperatures and higher primary 

productivity, which provide more organic matter for microbial degradation into NH4
+. Spring 

also had significantly lower δ15N-NH4
+ values (7.8 ± 7.3‰), likely reflecting direct 

remineralization from phytoplankton (5.1 ± 1.1‰) (Sachs et al., 1999), which typically exhibit 

δ¹⁵N values consistent with this range. The minimal fractionation (+1 to -2.3‰) associated with 

remineralization further supports this interpretation. When examining the relationship between 

ln(NH₄⁺) and δ15N-NH4
+ by season, no significant correlation was observed in spring or winter. 
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However, both summer and fall displayed a strong positive correlation (p < 0.0001), with higher 

δ15N-NH4
+ values corresponding to higher NH4

+ concentrations. The steep slope or isotope effect 

(ɛ = 13.6‰) suggests a process like DNRA as the dominant mechanism, consistent with 

interpretations from nitrate data. If DNRA is the primary process, this provides valuable insight 

into the yet-uncertain isotope effects associated with DNRA. 

No significant differences were observed between sites, except for the highest (site 9: 12.9 ± 

4.0‰) and lowest (site 14: 7.0 ± 8.0‰) δ15N-NH4
+ values. This variation may reflect the degree 

of processing the NH4
+ pool has undergone. For example, site 9 exhibited much lower NH4

+ 

concentrations (21.5 ± 20.8 µM) compared to site 14 (51.0 ± 40.3 µM). If the lower 

concentration at site 9 is due to more extensive processing of NH4
+, the remaining NH4

+ pool at 

this site would be expected to be enriched in δ15N. 

5.5.2.3. Groundwater NH4
+ 

Groundwater in this study exhibited unusually high NH4
+ concentrations, averaging 158.9 

± 345.2 µM. For comparison, a similar study of two coastal wells in the Baffin Bay, Texas 

watershed found much lower concentrations (1.6 ± 2.3 µM). High NH4
+ concentrations can occur 

during tourist seasons in coastal areas, often leading to the formation of a wastewater plume 

(Potsma et al., 1992; Lapointe et al., 1990; O’Driscoll et al., 2014). Under aerobic conditions, 

groundwater typically has NH4
+ concentrations of less than 11 µM. However, in anaerobic 

environments, concentrations can increase by more than 10 times, and salinization of 

groundwater can further raise ion concentrations, including NH4
+ (Rusydi et al., 2020). When 

NH4
+ dominates in suboxic or anaerobic aquifers, it suggests the intrusion of wastewater or the 

mineralization and decomposition of organic matter under anaerobic conditions (Szymczycha et 

al., 2012). Increased salinity in groundwater in coastal areas has also been linked to seawater 

intrusion or contamination from sewage or septic effluent (Bronders et al., 2012). 

Groundwater concentrations in this study were grouped into three tiers. Wells W5 and 

W7, which had significantly higher concentrations (507.8 ± 335.8 µM), were in the highest tier, 

while wells 3, 10, and 11 (118.4 ± 108.1 µM) were in the middle tier, and wells 1, 2, 4, 8, 9, 13, 

and 14 (41.7 ± 123.4 µM) were in the lowest tier. The highest tier wells were located near a 

condominium complex septic field and a residential area served by on-site sewage facilities 

(OSSFs), suggesting septic influences. The δ15N-NH4
+ values for these three tiers were 6.8 ± 

5.1‰ (highest concentration tier), 10.5 ± 8.8‰ (middle tier), and 15.0 ± 8.1‰ (lowest tier), 

indicating a relationship between δ15N- NH4
+ values and NH4

+ concentrations. For comparison, 

wastewater effluent directly sampled had a δ15N-NH4
+  value of +3.9 ± 2.8‰ (Cox, 2023), which 

closely matches the δ15N-NH4
+ value of 6.8‰ for the high-concentration wells, suggesting a 

direct source impact with minimal processing. As NH4
+ is processed, for example through 

nitrification or assimilation, microorganisms preferentially utilize the lighter 14N isotope. This 

results in the remaining NH₄⁺ becoming enriched in the heavier 15N isotope, thereby increasing 

the δ15N-NH4
+ value as NH₄⁺ concentrations decrease. Thus, the lower concentration wells will 

have higher δ15N-NH4
+ values due to increased NH₄⁺ processing before reaching the water table. 
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5.5.3. DON 

5.5.3.1. Surface Water DON 

Surface water average DON 

concentrations were 7 ± 5 µM, with the 

highest average concentrations observed 

in fall and summer (10 ± 4 µM and 9 ± 4 

µM, respectively). These concentrations 

are similar to typical open ocean values of 

5 ± 2 µM, with slightly higher 

concentrations commonly found in coastal 

areas (Voss et al., 2013; Knapp et al., 

2018). Increased concentrations in 

summer generally coincide with higher 

organic matter input from seawater, 

elevated microbial activity due to warmer 

temperatures, and increased DON 

production, as seen in other coastal areas 

like the Gulf Coast of Florida (Ahrens et al., 2020; Lamb et al., 2012; Hansell and Carlson, 

2001). Open ocean δ15N-DON values typically average around 5 µM, which aligns well with this 

study’s Gulf water data (5 ± 5‰). However, summer values (7 ± 3‰) and corresponding 

concentrations (9 ± 4 µM) were significantly higher, suggesting an additional source outside of 

the normal marine nitrogen cycle. To explore potential source mixing behind these summer 

increases, a plot of 1/DON vs. δ15N-DON (with 13% of data excluded as outliers) revealed a 

significant relationship indicating mixing (p < 0.0001) (Figure 5.24). A possible explanation is 

conservative mixing between a low marine-produced endmember and a higher wastewater-

derived endmember (22 ± 7.9‰). Increased wastewater inputs during summer, as discussed in 

previous sections, could contribute to this trend. Fall also showed higher DON concentrations (9 

± 4 µM) and a strong 1/DON vs. δ15N-DON correlation (p = 0.0003), but with lower δ¹⁵N-DON 

values (4 ± 3‰). While this still indicates mixing, the lower δ15N-DON values suggest a greater 

contribution from the marine nitrogen cycle, particularly from the degradation of primary 

producers in the fall. 

Site 1 exhibited the highest average concentration of DON (12 ± 9 µM) and was the only 

bay surface water site, located on Trinity Bay, which is fed by San Jacinto Bay. Bays and 

estuaries typically have higher concentrations of DON compared to coastal or open ocean waters, 

and rivers also contribute to DON levels (Voss et al., 2013). Elevated DON concentrations in 

estuarine systems have been observed in this region (Wetz et al., 2017). For example, San Jacinto 

Bay, which supplies water to Site 1, has a reported average total Kjeldahl nitrogen concentration 

of 120 µM (Wetz et al., 2019). 

5.5.3.2. Porewater DON 

Average porewater DON concentrations were 7 ± 8 µM with no significant differences 

between and most sites had average concentrations which were not significantly different from 

eachother. The very limited previous studies investigating porewater concentrations show similar 

results. A study conducted in the Gulf of Lawrence reported porewater concentrations between 8-

18 µM, while another study off the coast of North Carolina also reported that most porewater 

Figure 5.24. Surface water 1/[DON] vs δ15N-DON 

plot portraying potential mixing in the summer. 
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samples fell between 5 and 15 µM (Alkhatib et al., 2012; Taylor, 2005). These were not seasonal 

studies. 

The average porewater DON concentration was 7 ± 8 µM, with most sites having average 

concentrations that were not significantly different from one another. Previous studies 

investigating porewater concentrations report similar findings. For example, a study in the Gulf 

of Lawrence found porewater concentrations between 8 and 18 µM, while another study off the 

coast of North Carolina reported that most porewater samples ranged between 5 and 15 µM 

(Alkhatib et al., 2012; Taylor, 2005), although these studies were not seasonal in nature. The 

average δ15N-DON value in porewater samples was 5 ± 5‰, consistent with surface water values 

and values reported for porewater in the Gulf of Lawrence (between 4‰ and 7‰). There were 

no significant differences across seasons, and most sites had average δ15N-DON values that were 

not significantly different. This suggests a well-mixed and homogeneous porewater environment 

with respect to DON. Ammonium can be produced from DON through remineralization in 

sediments. The positive correlation (p = 0.0367) between DON concentrations and δ15N-NH4
+ 

supports evidence of remineralization in this system—specifically, as DON is consumed, the 

δ15N-NH4
+ values increase. Additionally, a strong correlation (r = 0.017) between ln[DON] and 

δ15N-DON further corroborates this processing in the sediment. The resulting slope indicates an 

inverse isotope effect of 1.6‰, which is minimal and falls close to the range suggested in the 

literature (+1 to -2.3‰) (Yu et al., 2021; Mobius, 2013; Kendall et al., 2007). 

5.5.3.3 Groundwater DON 

The average DON concentration in groundwater was 21±58 µM, with no significant 

differences observed across seasons. DON concentrations in groundwater can be highly variable 

and are influenced by several factors, such as depth to groundwater, proximity to groundwater 

mounds, land use, distance to surface water bodies, and soil type (Wang et al., 2018). 

Concentrations can range from as low as 7 µM to as high as 231 µM in silty and sandy loam 

areas, with significantly higher concentrations observed in highly forested areas (Liu et al., 2022; 

Xin et al., 2019). A study of groundwater DON in coastal aquifers of Massachusetts, with similar 

land use (primarily residential or vegetated), found highly variable concentrations ranging from 5 

to 182 µM (Kroeger et al., 2006). Another study in Baffin Bay, TX, located south of this study 

region, reported an average DON concentration of 29.9 ± 19.0 μM (Qiu et al., 2024). 

Groundwater concentrations in this study were categorized into two tiers: wells 5 and 7 had 

significantly higher average concentrations (48 ± 123 µM) compared to other wells (15 ± 29 

µM). Ammonium and DON are the primary nitrogen species discharged into septic fields, and 

wells 5 and 7 are located in a condominium complex serviced by OSSFs and in the backyard of a 

home in a neighborhood also serviced by OSSFs, suggesting that septic systems may contribute 

to the elevated concentrations. However, the isotopic signature of septic waste is typically high 

(22 ± 7.9‰), while the δ15N-DON values in wells 5 (2 ± 5‰), 7 (1 ± 6‰), and all other wells (3 

± 11‰) are lower. This suggests the presence of other sources and potential processing. 

 Some studies from estuaries in China have shown that samples with very low δ15N-DON 

values (<1‰) are derived from soil-derived organic matter, which is depleted in δ15N-DON (Yan 

et al., 2021). Additionally, low δ15N values in particulate organic matter can be converted to 

DON through decomposition, leading to a depletion of around 5‰ (Casciotti et al., 2003). The 

negative correlation between δ15N-NH4
+ and [DON], along with the positive correlation with 

ln[DON], further supports the occurrence of remineralization (ammonification) in the 

groundwater, leading to the production of NH4
+. 
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5.5.4 Nitrogen Species, Water Levels, and Implications 

Septic system malfunctions are increasingly linked to varying sea levels and more 

frequent heavy precipitation events, both associated with fecal and nitrogen pollution (Powers et 

al., 2021; Elmir, 2018). Rising water tables reduce the amount of unsaturated soil available for 

wastewater filtration, diminishing the effectiveness of onsite sewage facilities (OSSFs). This 

trend is supported by findings from this study, where [NO3
-] was positively (though insignificant) 

correlated with depth to water (DTW), δ15N-NO3
- was positively correlated with DTW, [NH4

+] 

was negatively correlated (p = 0.0026) with DTW, and δ15N-NH4
+ was positively correlated with 

DTW. Septic discharge typically contains 70-90% NH4
+, and when there is more space between 

the septic discharge field and the water table (i.e., greater DTW), there is more opportunity for 

NH4
+ to be nitrified to NO3

-, which can then be denitrified to harmless N2(g). In this scenario, 

NH4
+ is processed before it reaches the water table, and any residual NO3

- that is not denitrified 

to N2 would enter the groundwater with high δ15N-NO3
- values due to partial denitrification. In 

contrast, when DTW is low, septic discharge may directly reach the water table, causing 

unprocessed NH4
+ to enter the groundwater at high concentrations with an isotopic signature 

reflective of the septic source. This scenario likely explains the high NH4
+ concentration wells 

with low δ15N-NH4
+values, similar to the wastewater NH4

+ isotopic signature (+3.9 ± 2.8‰) 

(Cox 2023). The evidence suggests that the high NH4
+ concentrations, along with the lowest 

DTW values, indicate compromised OSSFs, likely due to sea level variations, which could be a 

significant issue in this region. For instance, while the exact depth of the OSSF units is unknown, 

they must be at least 3 feet (0.9 m) from the soil’s surface. The average DTW of the monitoring 

wells on the barrier island was approximately 1 m, with the high NH4
+ concentration wells 

having an average DTW of around 0.7 m. This suggests that in some cases, the water table was at 

or above the level of the septic drain field, allowing effluent to easily percolate into the 

groundwater. 

Coastal communities face increased risks of OSSF failures due to factors such as sandy, 

porous soils, erosion, severe weather events, and the effects of sea level variations (Mallin, 

2013). Furthermore, many OSSFs are old or undocumented, as permits were not required before 

the Clean Water Act of 1972. These aging systems are more prone to malfunctions, which can 

lead to contamination of groundwater and drinking water supplies with pathogens, nutrients, and 

other harmful substances. While fecal indicator bacteria (FIB) can serve as indicators of failing 

systems, it is crucial to identify and trace all potential sources of contamination, including 

OSSFs, to fully understand their role in nonpoint source pollution. One effective approach is the 

analysis of stable nitrogen isotopes in co-migrating nitrogen species within impacted waters. 

This method can help determine the specific contribution of OSSFs to nutrient pollution. 

 



127 

 

 

Conceptual Diagram. High and low water table scenarios and their relationships to nitrogen 

processing with respect to a septic field. Blue box provides specific details between water level, 

salinity, and nitrogen species. 
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6. INTEGRATED ASSESSMENT: GROUNDWATER TRACERS, BACTERIA, AND 
NUTRIENT INTERACTIONS 

Prepared by Roya Narimani, Ph.D., Allie Watson, Dorina Murgulet, Ph.D. 

6.1. Analysis of FIB Behavior in the Studied Environments  

Fecal indicator bacteria (FIB) loading hotspots in surface water tend to appear 

consistently along coastal and inland water bodies, with some seasonal variations observed.  For 

example, in Figure 6.1, summer months (e.g., June through August) show a higher presence of 

bacteria, possibly linked to increased rainfall, runoff, and tourism. Additionally, the higher 

population density at the beach during these months may contribute to increased bacterial 

contamination as more people visit the area, potentially leading to higher pollution levels. 

Conversely, cooler months like February, November, and December display lower contamination 

levels. Understanding these spatial and temporal patterns is critical for identifying sources of 

bacteria, assessing environmental conditions, and implementing mitigation strategies to improve 

water quality in the region (Figures 6.2 and 6.3). 

6.1.1. Surface  ater relationshi s 

Beyond seasonal variations in bacteria loading, another critical factor influencing 

bacterial presence in surface waters is dissolved oxygen (DO), which exhibits strong negative 

correlations with bacterial counts in certain areas. DO consistently showed a negative correlation 

with bacteria counts in surface water across all areas and regardless of the type of data 

transformations, with various strengths. For instance, DO was found to be important in 

predicting bacteria counts after Boruta analysis in areas 1 and 4 after the data underwent 

BOXCOX and logarithmic transformations. In area 1, DO showed a strong negative correlation 

(p-value: 0.01; p-value: 0.01) with bacteria counts after BOXCOX and logarithmic 

transformations, respectively. In area 4, DO showed a strong negative correlation with bacteria 

after BOXCOX and logarithmic transformations (p-value<<0.01; p-value<<0.01). While DO 

was an important predicting variable in these areas, it was not as significant in areas 2 and 3. In 

area 2, with BOXCOX, logarithmic, and no transformation, DO had a weak negative correlation 

with bacteria (p-value: 0.05; p-value: 0.06; p-value: 0.05, respectively), in addition to a rejected 

status after Boruta analysis. Across all transformations in area 3, DO also negatively correlated 

with bacteria and was rejected after Boruta analysis. The consistent negative correlation between 

DO and FIB across all areas, especially in the warmer months, can be explained by metabolic, 

decomposition, and nutrient-rich environmental processes. Higher temperatures reduce oxygen 

solubility, leading to lower dissolved oxygen levels that can trigger algal blooms, which support 

the growth of E. coli and enterococci in surface water (Tiefenthaler et al., 2008). In addition, FIB 

consume oxygen during respiration and are often associated with elevated organic matter, which 

amplifies microbial decomposition that depletes DO in areas with a high bacteria load. The 

difference in the strength of correlations and predictive capability of DO for bacteria counts 

across the surface water of different areas highlights that DO and FIB relationships can be 

locality-specific and may be influenced by other environmental factors, such as nutrient levels, 

salinity, and organic matter content (Badgley et al., 2019). Variability in land use, hydrology, and 

water chemistry across areas can lead to differing strengths in the correlation between DO and 

bacterial counts. 
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Figure 6.1. Monthly bacteria contamination levels in surface Water. The average bacteria levels 

across various monitoring locations are shown with color gradients. Red and orange markers 

represent higher contamination levels. 
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Figure 6.2. Monthly bacteria levels in groundwater. Higher concentrations are represented by the 

blue, orange, and red colors. 
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Figure 6.3. Monthly bacteria levels in porewater. Higher concentrations are represented by the 

blue, orange, and red colors. 
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Another variable influencing FIB dynamics is chlorophyll-a (chl-a), which demonstrated 

positive correlations with bacteria in surface water in specific areas. Chl-a was a weak significant 

predictor of FIB in surface water in multiple areas (area 1 and area 3) with positive correlations 

under different transformations. In area 1, chl-a positively correlated with bacteria after 

undergoing both BOXCOX, logarithmic and no transformations (p-value: 0.05; p-value: 0.05; p-

value: 0.05, respectively). In area 3, chl-a positively correlated with bacteria counts after a 

logarithmic transformation (p-value: 0.05). Across both areas, chl-a was confirmed through Boruta 

analysis, showing that the variable could be a significant predictor of FIB in these areas. The 

positive correlation between FIB and chl-a may be attributed to nutrient-rich waters and untreated 

surface water or subsurface runoff to the gulf, which can contribute to algae blooms (source of chl-

a) and elevated enterococci levels (Kelly et al., 2020).  

In contrast, other environmental factors exhibited unique correlations in different areas. 

Some areas exhibited unique variables that correlated with FIB and/or exhibited a predictive 

potential for FIB in surface water. Unique to area 2, the logarithmically transformed dataset 

showed relationships between FIB and radium isotopes (²²³Ra, ²²⁶Ra). ²²³Ra had a strong negative 

correlation (p-value<<0.01) with bacteria and ²²⁶Ra had a weaker negative correlation (r=-0.8, p-

value: 0.04). However, the above variables were rejected after undergoing Boruta analysis, 

indicating that the variables are unimportant for predicting bacteria counts in this area. Distinct to 

area 3, salinity consistently correlated positively with bacteria counts and a confirmed status after 

Boruta analysis across all transformations (BOXCOX, logarithmic, and none). After undergoing a 

BOXCOX transformation, salinity had a correlation of 0.5 (p-value<<0.01), a correlation of 0.5 

(p-value<<0.01) after a logarithmic transformation, and a correlation of 0.4 (p-value<<0.01) when 

no transformation was performed. In the original dataset with no transformations, ²²⁶Ra had a weak 

positive correlation (R2=0.8, p-value: 0.02) with bacteria counts in area 4, as well as the predictive 

potential for bacteria counts (Boruta status confirmed). In area 1, DIN was found to have a 

moderate negative correlation with bacteria after undergoing BOXCOX and logarithmic 

transformations. After the BOXCOX transformation was performed, the correlation of DIN with 

bacteria was −0.5 (p-value: 0.03). After the data was transformed logarithmically, the correlation 

of DIN with bacteria was −0.5 (p-value: 0.04). Despite the correlation between the two variables, 

Boruta analysis rejected DIN, indicating that it was not considered an important feature in the 

model for predicting bacteria counts. The spatially specific correlations observed herein 

underscore the complexity of bacterial dynamics across regions. 

After bacteria data underwent a logarithmic transformation, surface water chemistry 

variables had several significant correlations. DO showed a strong negative correlation with FIB 

(p-value<<0.01), while ORP had a weak positive correlation with FIB (p-value: 0.04). Like in 

groundwater and pore water, salinity exhibited a strong positive correlation with bacteria in surface 

water (p-value<<0.01).  In surface water, only the nitrogen species NO₂⁻ showed a significant 

relationship with bacteria, with a strong positive correlation (p-value<<0.01). 

6.1.2. Ground ater relationshi s 

Groundwater also exhibited distinct temporal and spatial patterns (Figure 15). Nitrogen 

species likely play a prominent role in bacterial dynamics in groundwater. Both areas 3 and 4, 

where well monitoring was available, a negative correlation between bacterial counts in 

groundwater and nitrogen species was observed. In area 3, NO₃⁻ and NO₃⁻+NO₂⁻ exhibited 

negative correlations across BOXCOX and logarithmic transformations. After a BOXCOX 
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transformation, NO₃⁻ had a weak correlation of –0.3 (p-value: 0.04), and NO₃⁻+NO₂⁻ had a weak 

correlation of –0.4 (p-value: 0.02) in area 3. Similar relationships were found after a logarithmic 

transformation was performed on the area 3 dataset, with a NO₃⁻ correlation of –0.4 (p-value: 0.03) 

and a NO₃⁻+NO₂⁻ correlation of –0.4 (p-value: 0.03). The status of significant organic nitrogen 

species in area 3 was rejected after Boruta analysis, indicating that these variables are not 

significant for predicting FIB values in groundwater. In area 4, NH₄⁺ and DIN consistently showed 

negative correlations in both transformed datasets. After a BOXCOX transformation, NH₄⁺ and 

DIN showed a significant negative correlation to bacteria (p-value<<0.01 and p-value<<0.01) with 

a confirmed Boruta status after analysis, highlighting the variables’ predictive ability for bacteria 

in this area. Similar to the BOXCOX transformed dataset, a logarithmic transformation indicated 

a significant negative correlation between NH₄⁺ and DIN with bacteria (p-value<<0.01 and p-

value<<0.01) and a confirmed Boruta status. This indicates that nitrogen species, while varying in 

form, are inversely related to bacterial levels in groundwater across both areas. Analysis also 

indicates that while nitrogen species have a negative correlation with bacteria in both areas, only 

inorganic nitrogen species are significant in predicting bacteria values in area 4 groundwater.  

While both areas demonstrate the relationship between nitrogen species and bacteria in 

groundwater, the two study areas have their unique significant variables. Area 3 is characterized 

by broader geochemical influences, including salinity, ORP, depth to water, and radium isotopes. 

In contrast, area 4 is dominated by strong nitrogen-bacteria interactions, with a narrower range of 

significant variables.  

After bacteria underwent a BOXCOX and a logarithmic transformation, a weak negative 

correlation between depth to water and bacteria was found in the groundwater (r=0.3, p-value: 

0.04; r=0.3, p-value: 0.04). After Boruta analysis, the BOXCOX-transformed dataset had a 

confirmed status, but the logarithmically transformed dataset yielded a rejected status. Salinity 

exhibited a weak positive correlation with bacterial counts in area 3 across both transformations, 

BOXCOX and logarithmic (r=0.4, p-value: 0.03; r=0.4, p-value: 0.03). After Boruta analysis for 

both transformations of bacteria against salinity, the status was rejected, indicating that salinity is 

not significant for predicting bacteria counts. Variability between the strength, significance, and 

Boruta status of salinity and bacteria between the two areas indicates that correlations likely reflect 

other environmental conditions of the area, such as fortnightly tidal variability (Boehm and 

Weisberg, 2005), which impact the input, transport, and distribution of fecal indicator bacteria 

(Knee et al., 2008). Despite the observed correlation, salinity itself plays a limited role in FIB 

levels; instead, tidal variations, which influence both salinity and FIB transport, are the primary 

factor (Boehm and Weisberg, 2005). Additionally, oxidation-reduction potential (ORP) showed a 

weak negative correlation in the logarithmically transformed dataset (r=-0.3, p-value: 0.05), 

however, ORP had a rejected status after Boruta analysis. A weak positive correlation with ²²³Ra 

was observed in the logarithmic dataset (r=0.3, p-value: 0.04) with a rejected status after Boruta 

analysis, showing that the variable is insignificant for predicting bacteria values.  

In contrast to area 3, no additional parameters (e.g., salinity, ORP, radium isotopes) showed 

significant correlations with bacterial counts, suggesting that nitrogen species are the primary 

drivers of bacterial variation in the groundwater in area 4. In area 4, strong negative correlations 

with NH₄⁺ and DIN were observed across BOXCOX and logarithmic datasets (p-value<<0.01 for 

both variables after BOXCOX and logarithmic transformations). These variables were also 

confirmed as significant predictors through Boruta analysis, emphasizing their role in predicting 

bacteria counts in area 4. Ammonium toxicity on FIB like E. coli, B. subtilis, and Enterococcus 



142 

 

often depends on the concentration, the bacterial species present, the initial bacterial density, and 

the specific environmental conditions. High ammonium concentrations can be lethal to FIB, 

however, mortality is attributed to ionic or osmotic stress rather than directly to ammonium toxicity 

(Muller et al., 2006). In addition, a study done in 2023 by Pereira et al. found that Enterococcus 

exhibits a higher mortality rate in the presence of in-use quaternary ammonium compounds 

(QACs) and lack QAC tolerance genes. QACs are commonly found in disinfectants, antiseptics, 

preservatives, food production products, and consumer products (Pereira et al., 2023), which can 

make their way into the environment through wastewater treatment plant discharge and leaching 

sewage (Arnold et al., 2023). 

After the bacteria dataset underwent a logarithmic transformation, various factors were 

found to be significant across all systems, including groundwater, pore water, and surface water. 

DO and ORP demonstrated a strong positive correlation with FIB (p-value<< 0.01 and p-

value<<0.01), highlighting their significance across all systems. Additionally, salinity and pH 

displayed strong positive correlations across all systems (p-value<<0.01 for both variables). FIB, 

like enterococci, tend to be more sensitive to acidic environments (Hubbart et al., 2022), indicating 

that more neutral and alkaline environments are conducive to bacterial survival across all systems. 

Radium isotopes and radon presented mixed relationships with FIB. Radon (Rn) exhibited a strong 

negative correlation (p-value<< 0.01) with bacteria counts. A negative correlation between Rn and 

FIB could be found in environments with high wind conditions, which cause the increased 

degassing of Rn in surface water (Lefebvre et al., 2015) and an increase in wave action, resulting 

in sediment suspension that can prolong FIB survival (Bradshaw et al., 2021). Radium isotopes 

²²³Ra and ²²⁴Ra also showed negative correlations. However, the correlation was stronger between 

FIB and ²²⁴Ra (p-value<<0.01) and weaker between FIB and ²²³Ra (p-value = 0.02).  These 

radon/radium patterns with FIB could arise from various conditions. Dilution of bacteria by 

radon/radium-rich groundwater with longer residence times (Hwang et al., 2019) could cause an 

inverse relationship between FIB and radon/radium to be observed. In addition, environmental 

factors favoring bacterial growth, such as increased organic matter, stagnant waters, or reduced 

flow (Evanson and Ambrose, 2006), in radon/radium-poor areas could explain these patterns. 

Biogeochemical factors could also play a role, such as sediment interactions reducing 

radon/radium levels while promoting bacterial activity. Additionally, human or animal and surface 

runoff inputs could disproportionately elevate bacteria in areas with low radon/radium influence.  

Bacteria data was log-transformed and compared against groundwater chemistry data to 

identify possible relationships. DO showed a strong positive correlation with FIB concentrations 

(p-value<<0.01) Like DO, salinity exhibited a significant positive correlation (p-value<<0.01). 

Radium isotopes ²²³Ra and ²²⁴Ra showed strong positive correlations with bacteria (p-value<<0.01; 

p-value<<0.01, respectively). The 224Ra/226Ra activity ratio (e.g., AR224:226) also had a strong 

positive correlation with bacteria (p-value<<0.01). This indicates that bacterial inputs are 

associated with very recent nearshore inputs since 224Ra is a short-lived isotope (half-life of 3.6 

days). Nitrogen species consistently exhibited negative correlations with FIB concentrations in 

groundwater. TDN showed a strong negative correlation (p-value<<0.01), while NO₃⁻ and the 

NO₃⁻ + NO₂⁻ had weaker but still significant negative correlations (p-value = 0.016 and p-value = 

0.011, respectively). 

Few groundwater variables showed significant correlations with fecal indicator bacteria 

(FIB) in the untransformed dataset. DO and salinity both showed weaker positive correlations with 

fecal indicator bacteria, with DO being the stronger of the two (p-value: 0.016 and p-value: 0.05, 
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respectively). Radium isotopes ²²³Ra and ²²⁴Ra exhibited strong positive correlations with FIB in 

groundwater (p-value: 0.004 and p-value<<0.01, respectively). Contrasting against the log-

transformed bacteria dataset, surface water DO was found to have a strong negative correlation 

with bacteria in the untransformed dataset (p-value<<0.01). Like the log-transformed dataset, 

surface water salinity had a strong positive correlation with bacteria (p-value<<0.01). A weak 

positive correlation between ²²⁶Ra and bacteria (p-value: 0.03) was found. Additionally, unique to 

the untransformed surface water when compared to other untransformed systems, NO₂⁻ was found 

to have a strong negative correlation with FIB (p-value: 0.009). 

6.1.3. Pore ater relationshi s 

The analysis of pore water chemistry revealed several significant correlations with log-

transformed FIB data, highlighting the intricate relationships between geochemical conditions and 

microbial dynamics in nearshore environments. DO exhibited a weak positive correlation with FIB 

concentrations (p-value: 0.041), suggesting oxygen availability may slightly enhance bacterial 

persistence or mobilization. Still, this relationship is less pronounced than other factors. This 

indicates that areas with moderate flushing, where oxygenated waters are present, could still pose 

a risk of microbial contamination if other environmental conditions are favorable. Salinity, on the 

other hand, showed a strong positive correlation with FIB (p-value << 0.01), underscoring its 

significant role in bacterial persistence. Elevated salinity levels in porewater indicate stagnant, 

poorly flushed sediments, which create an environment conducive to the concentration and 

survival of bacteria. Enteric bacteria have shown increased survival in sediments, as particulates 

provide microhabitats that offer unique protection, nutrients, and more moisture (Gerba and 

McLeod, 1976; Pommepuy et al., 1992; Davies et al., 1995; Howell et al., 1996; Desmarais et al., 

2002). Additionally, suitable microhabitats for Enterococcus and other fecal bacteria can be 

provided by biofilm formation (Piggot et al., 2012). Microbes and bacteria are protected by 

physical and biological challenges and stressors along shorelines such as fluctuations in 

temperature, desiccation, ion concentration, predation, ultraviolet radiation, and wave action by 

extracellular polymeric substances (EPS), which allow for microbes to adhere to surfaces and each 

other (Piggot et al., 2012). Such conditions are likely exacerbated by tidal forcing or saltwater 

intrusion, particularly in areas where septic system backflow or sewage line failures introduce 

additional nutrient loads, further enhancing bacterial persistence. 

Radium isotopes, 223Ra and 224Ra, demonstrated strong positive correlations with FIB, with 

p-values of 0.007 and 0.004, respectively. These correlations suggest that radium activities, often 

associated with SGD and sediment-water interactions, are reliable indicators of bacterial transport 

and contamination pathways. Elevated radium activities likely reflect zones, where contaminated 

groundwater or sediment-water exchanges, facilitate the mobilization of FIB from sediments into 

nearshore environments, particularly in areas affected by failing infrastructure. Contrary to the 

trends observed in groundwater, the activity ratio of 224Ra/226Ra (AR224:226) displayed a weaker 

positive correlation with FIB concentrations (p-value: 0.027) with the log-transformed data. 

However, when using the untransformed dataset for pore water. The AR224:226 correlated 

significantly with FIB (p-value: 0.0084) in pore water and was the only significant correlated 

variable.  Specific hydrodynamic or geochemical processes govern the relative contributions of 

short-lived and long-lived radium isotopes. Higher AR224:226 values likely reflect recent SGD or 

sediment-water exchange events where 224Ra is readily desorbed from sediments due to its short-

lived nature and dynamic hydrodynamic conditions (Gonneea et al., 2008). These events can act 

as conduits for FIB transport, as SGD and sediment disturbance mobilize bacteria and other 
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contaminants from sediments into the overlying water column. In contrast, areas dominated by 

longer residence times or limited exchange processes may exhibit lower AR224:226 ratios and 

reduced FIB mobilization. 

Thus, the correlation between AR224:226 and FIB concentrations underscores the 

interplay between radium mobility, sediment-water interactions, and microbial contamination. 

Monitoring these isotopic ratios can provide valuable insights into recent SGD dynamics and 

associated bacterial transport pathways, particularly in nearshore environments with complex 

hydrological and geochemical conditions. 

6.1.4. Combined ground ater,  ore ater, and surface  ater relationshi s 

When considering the data from all three environments, including groundwater, surface 

water, and porewater, nitrogen species showed significant negative correlations with FIB 

concentrations. TDN had a significantly strong negative correlation (p<<0.01), as did DON (p-

value = 0.006). DIN and its components, NO₃⁻, NO₂⁻, and the combined measure of nitrate and 

nitrite, all showed strong negative correlations with FIB concentrations (p-value<<0.01 for listed 

variables). NH₄⁺ also exhibited a strong negative correlation (p<<0.01).  

In the untransformed dataset, FIB showed relationships with several variables across all 

systems (groundwater, porewater, and surface water). Like in the logarithmically transformed 

bacteria dataset, bacteria showed a strong positive correlation with DO (p-value<<0.01). Strong 

positive correlations were also observed between bacteria and salinity, pH, and ORP (p-

value<<0.01 for listed variables). Radon and radium isotopes (²²³Ra and ²²⁴Ra) showed negative 

correlations with bacteria at varying strengths. Radon had a strong negative correlation with FIB 

(p-value<<0.01). ²²³Ra exhibited a weaker negative correlation with bacteria (p-value: 0.02), while 

²²⁴Ra had a strong negative correlation with bacteria (p-value<<0.01). The activity ration of ²²⁴Ra 

to ²²³Ra (AR224:223) had a weak negative correlation with FIB (p-value: 0.04). All nitrogen 

species showed negative correlations with fecal indicator bacteria (FIB), indicating that these 

species may play a role in inhibiting bacterial growth. Total dissolved nitrogen (TDN) had a strong 

negative correlation with bacteria (p-value<<0.01). Dissolved organic nitrogen (DON) and its 

species, nitrate (NO₃⁻), nitrite + NO₂⁻, and the combined measurement of the two (NO₃⁻ + NO₂⁻) 

exhibited significant negative correlations with FIB (p-value<<0.01 for DON and its components). 

Dissolved inorganic nitrogen (DIN) and ammonium (NH₄⁺) had strong negative correlations with 

bacteria across all systems (p-value<<0.01 and p-value<<0.01). 

6.2. Analysis of Chemical Data Using Dee  Learning and Princi al Com onent 

Analyses  

The results of the Variational Autoencoder (VAE) for surface sample chemicals, focusing 

on the two highest latent dimensions, are shown in Figure 6.4. Latent Dimension 1 accounts for 

21.21% of the total variance, Latent Dimension 2 accounts for 32.60%, Latent Dimension 3 

accounts for 25.39%, and Latent Dimension 4 accounts for 20.80%.  
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The red arrows in the plot indicate statistically significant chemical variables with a p-

value of less than 0.05, demonstrating a significant correlation with the bacteria dataset. These 

arrows were highlighted to emphasize the chemicals that have a notable relationship with bacteria 

levels. Additionally, when arrows are aligned in the same direction, it suggests a positive 

correlation between those chemicals, while arrows in opposite directions indicate a negative 

correlation. 

The results of the Variational Autoencoder (VAE) for surface sample chemicals, focusing 

on the two highest latent dimensions with log-transformed bacteria is shown in Figure 6.5. Latent 

Dimension 1 accounts for 26.85% of the total variance, Latent Dimension 2 accounts for 7.17%, 

Latent Dimension 3 accounts for 28.18%, and Latent Dimension 4 accounts for 37.81%. The 

remaining figures display the chemical datasets across different systems, including groundwater 

and pore water, with both the original and log-transformed Bacteria datasets. These visualizations 

provide a comprehensive view of the relationships and correlations between the chemical variables 

and the Bacteria dataset in various water systems. Figure 6.6, Figure 6.7, Figure 6.8, and Figure 

6.9 illustrate the results of the Variational Autoencoder (VAE) for pore sample chemicals with 

original bacteria, pore sample chemicals with log-transformed bacteria, ground sample chemicals 

with original bacteria, and ground sample chemicals with log-transformed bacteria, respectively. 

 

 

 

 

 

 

 

 

Figure 6.4. Results of the Variational Autoencoder (VAE) for surface sample chemicals with 

the original Bacteria dataset. (a) The relationship between Latent Dimension 2 (32.60%) and 

Latent Dimension 3 (25.39%), with red arrows highlighting variables with a p-value less than 

0.05. (b) Contribution of each variable to the respective latent dimensions. 

P-value <0.05 

(a) (b)            
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Figure 6.5. Results of the Variational Autoencoder (VAE) for surface sample chemicals with 

log-transformed Bacteria dataset, focusing on the highest latent dimensions. (a) The 

relationship between Latent Dimension 3 (28.18%) and Latent Dimension 4 (37.81%), with 

red arrows highlighting variables with a p-value less than 0.05. (b) Contribution of each 

variable to the respective latent dimensions. 

P-value <0.05 

(b) (a) 

Figure 6.6. Results of the Variational Autoencoder (VAE) for pore sample chemicals with the 

original Bacteria dataset, focusing on the highest latent dimensions. (a) The relationship 

between Latent Dimension 1 (35.41%) and Latent Dimension 3 (42.18%), with red arrows 

highlighting variables with a p-value less than 0.05. (b) Contribution of each variable to the 

respective latent dimensions. 

P-value <0.05 

(b) (a) 
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Figure 6.7. Results of the Variational Autoencoder (VAE) for pore sample chemicals with log-

transformed Bacteria dataset, focusing on the highest latent dimensions. (a) The relationship 

between Latent Dimension 3 (44.46%) and Latent Dimension 4 (40.45%), with red arrows 

highlighting variables with a p-value less than 0.05. (b) Contribution of each variable to the 

respective latent dimensions. 

(a) (b) 

P-value <0.05 
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(a) 

P-value <0.05 

(b) (a) 

Figure 6.8. Results of the Variational Autoencoder (VAE) for ground sample chemicals with the 

original Bacteria dataset, focusing on the highest latent dimensions. Results of the Variational 

Autoencoder (VAE) for ground sample chemicals with the original Bacteria dataset, focusing on 

the highest latent dimensions. (a) The relationship between Latent Dimension 3 (20.64%) and 

Latent Dimension 4 (73.59%), with red arrows highlighting variables with a p-value less than 

0.05. (b) Contribution of each variable to the respective latent dimensions. 

(b) 

Figure 6.9. Results of the Variational Autoencoder (VAE) for ground sample chemicals with log-

transformed Bacteria dataset, focusing on the highest latent dimensions. (a) The relationship 

between Latent Dimension 3 (38.81%) and Latent Dimension 4 (50.74%), with red arrows 

highlighting variables with a p-value less than 0.05. (b) Contribution of each variable to the 

respective latent dimensions. 

P-value <0.05 

(a) 
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6.3. Relationshi s Bet een Bacteria Levels, Ground ater Elevation, and 

Environmental Factors using Machine Learning Techniques 

6.3.1. Analysis of environmental and hydrological datasets, preprocessing of data, and 

variables selection for machine learning models 

The study area spans three counties: Matagorda, Brazoria, and Galveston. It was divided 

into distinct regions based on different watersheds, with the dataset extracted using GIS for each 

specific area. The tables below present the datasets utilized for each region. This approach 

categorizes the study area into four locations according to watershed type. This analysis 

investigates the relationship between environmental factors and bacteria across various areas, 

including surface, pore, and groundwater samples. It examines how key environmental variables, 

such as tide level, groundwater elevation, streamflow, and precipitation, correlate with bacterial 

levels in each water system. The aim is to understand the influence of environmental and 

hydrological factors on bacterial distribution and behavior across different areas, ultimately 

identifying the most significant factors for optimizing the machine learning model. For instance, 

Figure 6.10 Figure 6.10. Analysis of Environmental Factors and Bacteria in Area 4 in different 

months: (a) 2021-12; (b) 2022-02; (c) 2022-03; (d) 2022-06; (e) 2022-08; (f) 2022-10; (g) 2022-

11; (h) 2022-12; (i) 2023-01; (j) 2023-02; (k) 2023-04.illustrates the variation in tide level, 

precipitation, groundwater elevation, streamflow, and bacteria levels during December 2021 for 

Galveston County (Area 4). Bacteria levels exhibit notable fluctuations, with significant increases 

observed during certain peaks. These spikes are frequently associated with rainfall events 

(indicated by blue bars), as well as changes in tide levels and groundwater elevation. 
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Figure 6.10. Analysis of Environmental Factors and Bacteria in Area 4 in different months: (a) 

2021-12; (b) 2022-02; (c) 2022-03; (d) 2022-06; (e) 2022-08; (f) 2022-10; (g) 2022-11; (h) 2022-

12; (i) 2023-01; (j) 2023-02; (k) 2023-04. 

The figures presented below (Figure 6.11 and Figure 6.12) illustrate the statistical 

significance of various transformed environmental factors in relation to bacteria levels in the 

dataset. These visualizations highlight which factors have a significant impact on bacteria 

concentrations, helping to identify key drivers of bacterial increases in different areas and 

systems. By analyzing the relationships between these transformed factors and bacteria levels, 

we can gain valuable insights into the underlying environmental conditions contributing to 

bacterial growth and contamination in areas 1 and 2. This information is crucial for 

understanding the dynamics of bacteria proliferation and for informing strategies aimed at 

mitigating contamination. 
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Figure 6.11. Area 1: Normalized Bacteria in surface water and significant environmental 

factors: (a) original bacteria data; (b) log-transformed bacteria data. 

 

 

(a) 

(b) 
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Figure 6.12. Area 2: Normalized Bacteria in surface water and significant environmental 

factors: (a) original bacteria data; (b) log-transformed bacteria data. 

 

6.3.2. Surface water bacteria level predictions using machine learning techniques 

A machine learning model was developed for modeling surface bacteria levels using 

environmental factors, including streamflow, tide level, three sources of precipitation, wind 

direction, sea level pressure, soil moisture, terrestrial water storage, wind speed, water 

temperature, air temperature, surface runoff, root-soil moisture, and sampled data for groundwater 

elevation. To ensure data readiness, a thorough cleaning and preprocessing step was conducted, 

focusing on removing inconsistencies, addressing missing data, and preparing the dataset for 

robust analysis. Additionally, data was normalized to ensure that all features were on a similar 

scale. Normalization was particularly important to prevent dominance by features with larger 

numerical ranges, improving model stability, convergence speed, and overall performance. 

One of the key preprocessing steps involved the handling of missing data to ensure the 

dataset's integrity and suitability for analysis. Next, we focused on feature selection to identify the 

most relevant variables influencing surface bacteria levels. Additionally, feature selection was 

(a) 

(b) 
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employed to identify the most relevant variables influencing surface Bacteria levels, such as 

precipitation, tides, and other environmental factors. This targeted approach enhanced the model’s 

efficiency by reducing dimensionality, mitigating overfitting risks, and focusing computational 

resources on impactful predictors. Data augmentation was implemented to address this limitation 

because the bacteria dataset was insufficient to develop a robust model due to its lack of continuous 

temporal coverage. Synthetic samples were generated using Gaussian noise to augment the dataset 

and improve model generalization, allowing the model to learn from a more diverse dataset and 

reducing overfitting risks. 

A combined dataset (X_combined) was created by appending the labels column to the 

augmented data. The data was then split into training and testing sets. The training set included 

both original and synthetic data to enhance the model’s exposure to variability, while the testing 

set was restricted to original data only to maintain unbiased evaluation metrics. To evaluate the 

model’s performance exclusively on the original data, the testing set was filtered to include only 

the original samples and their corresponding labels to ensure that synthetic data did not interfere 

with the testing phase, preserving the integrity of the results. Finally, XGBoost model was 

developed by selecting the most influential features, leading to better generalization when applied 

to unseen data. Hyperparameter tuning was done to identify the optimal settings that minimize 

prediction error and improve model robustness.  

As shown in Figure 6.13, for area 3, the model achieved an RMSE of 0.4340, an R² value 

of 0.90, and an MAE of 0.122. In comparison, area 4 demonstrated an even stronger performance 

with an RMSE of 0.242, an R² value of 0.96, and an MAE of 0.110. These results highlight the 

model's robustness and strong predictive capability across different areas.  

 

As shown in Figure 6.14a, the most influential factors contributing to surface bacteria 

contamination in area 3 include streamflow (station: 8117210), 15-day precipitation accumulation 

(station: DNCT2), groundwater elevation in well 10, wind direction (EW) at station 8771972, tide 

level (station: 8771486) with a 5-day lag, and tide level at station 8771013 with a -3-day lag, 

among others. The combination of these hydrological and meteorological variables reflects a 

Figure 6.14. Scatter plot of the model's predictions for both areas using transformed log 

bacteria data. 

 

Figure 6.13.  Scatter plot of the model's predictions for both areas using transformed log 

bacteria data. 
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strong interplay between surface water inputs and groundwater fluctuations, driving bacteria levels 

in this area. In contrast, for area 4, as illustrated in Figure 6.14b, the primary factors are tide level 

(station: 8771013) with lags of -3, -10, and 3 days, 7-day precipitation accumulation (station: 

BZRT2), streamflow (station: 08117301), groundwater elevation in well 2 with lags of -4 and 1 

days, average sea level pressure, and salinity. The dominance of tide-related features highlights the 

significant influence of coastal processes on bacteria dynamics in Area 4, while interactions with 

groundwater and precipitation provide additional pathways for contamination. 
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Each subplot represents a specific area, with features ordered by their contribution to 

reduce the model's error. The bars indicate the relative importance of each feature, with the values 

on the bars representing their importance scores. 
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7. OVERALL CONCLUSION  

This study highlights the essential need for interdisciplinary and thorough measurements 

in addressing the complex hydrological, ecological, and infrastructural challenges facing the 

Texas Gulf Coast. By combining various methods such as groundwater monitoring, sediment 

analysis, microbial source tracking (MST), groundwater tracers, and predictive modeling, we 

gain a deeper insight into the factors influencing water table fluctuations, the transport of 

nutrients and microbes, and their effects on both human health and the environment.  Our results 

indicate a significant connection between upstream hydrological systems and the groundwater 

dynamics of barrier islands. This connection underscores the importance of coordinated 

management approaches across the region to effectively tackle issues related to flooding, 

contamination, and ecological degradation.  

The research found that groundwater recharge from upstream streamflow, alongside local 

rainfall and tidal effects, notably elevates water tables in the barrier islands from late winter to 

early spring. This elevation increases the risk of flooding, especially in areas with permeable 

sediments and shallow water tables, which can lead to septic system failures, sewage backflow, 

and the transport of fecal indicator bacteria and nutrients into nearshore waters. Such incidents 

pose immediate health risks to beachgoers due to bacterial contamination and can result in long-

term ecological challenges like nutrient enrichment, eutrophication, and harmful algal blooms. 

Furthermore, our use of radium isotopes as tracers revealed critical areas of nutrient-rich 

groundwater discharge, further illustrating the interconnected nature of coastal water quality, 

regional hydrology, and the resilience of infrastructure. 

The predictive modeling aspect of our research identified key factors influencing water 

table fluctuations, including streamflow, soil moisture, rainfall, and terrestrial water storage. 

These models have demonstrated strong effectiveness in predicting groundwater behavior, 

equipping coastal managers with the tools to foresee high-risk periods and implement proactive 

measures to minimize flooding and contamination risks. The findings stress the importance of 

predictive tools in enhancing decision-making processes, especially for issuing advisories to 

safeguard recreational users, strengthening infrastructure resilience, and protecting coastal 

ecosystems. 

 

Recommendations 

1. Hydrological Monitoring and Early Warning Systems: 

o Establish long-term, regionally integrated monitoring programs that focus on 

groundwater levels, upstream streamflow, precipitation, and tidal influences. These data 

should be used to refine predictive models for better forecasting of water table 

fluctuations and flood risks. 

o Implement real-time early warning systems for beach advisories, using bacterial 

contamination thresholds and predictive indicators such as water table levels, rainfall, and 

streamflow dynamics. 

2. Infrastructure Improvements: 
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o Upgrade and maintain septic systems and sewage infrastructure in vulnerable areas, 

particularly in zones prone to shallow water tables and tidal influences. Consider the 

adoption of more resilient, watertight designs that minimize infiltration and backflow 

during high water table periods. 

o Develop policies and funding mechanisms to retrofit or replace failing septic systems, 

especially in coastal communities with older infrastructure. 

3. Nutrient and Contaminant Mitigation: 

o Introduce land-use policies that regulate nutrient and contaminant runoff, particularly 

upstream, to reduce inputs into regional hydrological systems. Encourage sustainable 

agricultural practices and reduce impervious surfaces to improve groundwater recharge 

and minimize nutrient loading. 

o Promote the use of green infrastructure, such as vegetated buffers and constructed 

wetlands, to filter contaminants and nutrients before they enter groundwater or surface 

water systems. 

4. Public Health and Recreational Safety: 

o Establish standardized protocols for monitoring and reporting fecal indicator bacteria 

levels in recreational waters. This includes integrating microbial source tracking into 

routine assessments to identify contamination sources and inform targeted interventions. 

o Conduct public education campaigns on the risks of bacterial contamination and the 

importance of compliance with advisories to protect health during high-risk periods. 

5. Coastal Ecosystem Resilience: 

o Prioritize the protection and restoration of coastal ecosystems, which play a key role in 

mitigating the impacts of nutrient loading and supporting biodiversity. Efforts should 

focus on preserving natural buffers such as wetlands and dunes to improve coastal 

resilience against flooding and contamination. 

o Develop conservation strategies for areas identified as hotspots of submarine 

groundwater discharge to balance ecological health with groundwater management needs. 

6. Integrated Management Strategies: 

o Foster collaboration between upstream water resource managers and coastal stakeholders 

to develop cohesive management plans that address the interconnectedness of regional 

hydrological and coastal systems. 

o Incorporate climate variability projections into planning efforts to account for potential 

shifts in precipitation patterns, sea-level rise, and increasing storm intensity, ensuring 

long-term sustainability and resilience of coastal resources. 

This research highlights the complexity and interconnectivity of coastal groundwater 

systems and underscores the need for an integrated, science-driven approach to managing these 

dynamic environments. By addressing the hydrological, ecological, and infrastructural 
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challenges collectively, coastal managers can enhance resilience and sustainability, protecting 

both human and environmental health in the face of evolving climate and development pressures. 
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8. TASK 4: EDUCATION AND OUTREACH  

TAMUCC has successfully trained graduate and undergraduate students to collect, 

organize, analyze, and interpret data. This project has effectively integrated research findings and 

supportive materials into the curricula and developed hands-on educational activities primarily 

targeting undergraduate and graduate students. TAMUCC has incorporated data visualization 

techniques, such as concentration maps and groundwater fluxes, into classroom education and 

made these visualizations available to the research community through exhibits at national 

meetings and workshops. Principal investigators and their graduate students have participated in 

and presented results at local and regional conferences. 

 

8.1. List of all Communications 

None to report.  

8.2. List of Student Training O  ortunities 

TAMUCC Undergraduate/Graduate Education: Dr. Roya Narimani trained both 

graduate and undergraduate students in data analysis and machine learning techniques from the 

ground up, preparing them to handle big data effectively. She has served as a co-instructor for the 

Big Data Blitz course during the summer semester, providing an intensive overview of big data 

analysis, and as an instructor for the Environmental Forecasting course in the fall semester, 

where students apply machine learning to real-world environmental forecasting challenges. Cody 

Lopez, Laura Button, Mahima Yogesh, Remi Labeille, Amanda Burton, Ifeanyi Anyanwu, 

Quincy Walker, Allyson Girard, Justin Elliott, Rostam Mirzadi, Meehan Skylar, and Lillian 

Pedraza are part of this group who participated in these classes.  

Cody Lopez has trained students Joy Brown, Brittney Ortega, Cindy Vaquero, Victoria 

Rivera, Sarah Martinez, Karol Ramirez-Prado, Mikaiel Khan, Annelyz Garza, Allie Watson, 

Laura Button, McKenna Reinsch, Sean Majors, Ahmed Eid, Meehan Skylar, Jesicca Palitza, and 

Ifeanyi Anyanwu on field work, sample collection and processing as well as measurements of 

nutrients, anions, radon and radium. 

Erin Taylor trained undergraduate students, Kristen Lincoln, Paulina Caro, and Sofia 

Miatello, in general water quality and sample processing techniques.  

Dr. Audrey Douglas has trained students on processing, measurement and analysis 

radium and radon, data entry, and other standard operating procedures. 

UTSA Undergraduate Education: The project was introduced to the undergraduate 

students enrolled in CE 2633 Environmental Engineering. A presentation was developed covering 

the basics of fecal source tracking, study sites and methods, and the importance of the study for 

Texas Coastal areas and delivered as part of regular lecture in the Water and Wastewater Module. 

The class was enthusiastic about the project and several students approached Dr. Kapoor 

afterwards to learn more about the project and seek opportunities to be involved in such studies. 
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UTSA Graduate Education: The project was introduced to the students enrolled in the 

course CE 5683 Biological Phenomenon in Environmental Engineering. A presentation covering 

the basics of fecal source tracking, study sites and methods, and the study's importance for Texas 

Coastal areas was developed and delivered as part of a regular lecture in the Microbial Water 

Quality section. The class was enthusiastic about the project, and several students approached Dr. 

Kapoor afterwards to learn more about it and seek opportunities to be involved in such studies. 

TAMUCC Students trained:  

Graduate students – Laura Button, McKenna Reinsch, Sean Majors, Ahmed Eid, Ifeanyi 

Anyanwu, Meehan Skylar, Erin Taylor, Cody Lopez 

Undergraduate students – Joy Brown, Brittney Ortega, Cindy Vaquero, Victoria Rivera, 

Sarah Martinez, Karol Ramirez-Prado, Mikaiel Khan, Annelyz Garza, Allie Watson, Kristen 

Lincoln, Paulina Caro, Sofia Miatello 

UTSA Students trained:  

Graduate students – Dipti Anik Dhar, Carlos Romero Vazquez, Arash Jafarzadeh 

Undergraduate students – Camila Sandoval, Alexandria Bowdoin, Jazmin Carothers 
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