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Executive Summary 

Globally, the population density of coastal areas is nearly three times that of inland areas, 

and coastal development is a proven threat to estuarine ecosystems. Impervious surface is an 

effective indicator of coastal development. Studies have shown that coastal areas with greater 

impervious coverage have exhibited higher nutrient loads, enlarged salinity range, increased 

peak flow, and accelerated habitat degradation. The Corpus Christi-Kingsville metropolitan area 

surrounding the Upper Laguna Madre (ULM) is a fast-growing coastal area in Texas. Since 

1970, its population and impervious surface have increased by 52.9% and 44.5%, respectively. 

The population is projected to have a further 27.5% increase by 2050, indicating an 

unprecedented challenge to the management of freshwater inflow and estuarine resources. 

However, there is a lack of understanding of the coupled processes of urbanization, water 

quality, and habitat changes. First, the changes of land cover and land use often exhibit spatial 

heterogeneity, temporal nonlinearity, complex interactions with socioeconomic and ecological 

factors, and feedback to local zoning and taxation polices. Second, the applications of high-

resolution aerial imagery in coastal mapping and assessment are hindered by the lack of effective 

methods for radiometric correction. Third, there is a lack of tools for quantitatively linking 

coastal human and environmental stresses to the responses of habitat and water quality and 

associated management strategies. Therefore, there is a need to apply advanced hydrological, 

geospatial, and data-driven techniques to develop cost-effective, robust tools for improving the 

assessment and management of water quality and habitat in urbanizing coastal regions. 

This project aimed to qualitatively analyze the impact of long-term coastal development 

on water and habitat quality of ULM over the past four decades. Project activities consisted of 

several interlinked tasks over two years, starting with hydrological monitoring and analysis, 

transitioning into comprehensive remote sensing and predictive modeling, and culminating in 

outreach and decision support efforts. The hydrological monitoring efforts resulted in the 

establishment of the first evaporation pan station in ULM. Observations at this station provided 

essential information to estimate monthly evaporation rates in ULM. Such results were extended 

to adjust an existing state freshwater dataset that was based on evaporation stations outside 

UTM. The results led to the reconstructed monthly freshwater balance of ULM since January 

1977. Long-term landscape changes in ULM and its neighborhoods were characterized using a 
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combination of satellite and aerial imagery using Google Earth Engine. Ground truth was 

established based on data from field surveys using small unmanned aerial vehicles and historical 

images from the National Agriculture Imagery Program. We developed a hybrid method to 

estimate annual changes of impervious surface using the time series of Landsat imagery. It built 

seasonal composite images within a multi-year window, trained a classification model using 

multiple spectral predictors, and improved the initial classification results by temporal filtering. 

We further developed a pseudoinvariant near-infrared threshold (PINT) method for converting 

digital numbers into surface reflectance based on pseudoinvariant pixels identified from Landsat 

imagery. The extensive remote sensing efforts provided inputs to the development of different 

analytic models for analyzing urbanization-induced stress on estuarine water quality and habitat, 

including: (i) a nonlinear autoregressive network ensemble with exogenous inputs as a cost-

effective tool to characterize nonlinear relationships; (ii) an integrated Markov-Chain Cellular-

Automata model as a spatially-explicit tool to estimate the evolution of landscape. These 

predictive tools could generate future patterns of land cover and habitat under different scenarios 

of environmental change and socioeconomic development, providing essential information for 

the planning and management of coastal land and water resources. Finally, a set of decision 

support systems was established for enhancing the awareness of urbanization process and its 

impact on coastal ecosystems. Built on Google Earth Engine Apps, these decision support 

systems are publicly accessible to the world, and users can view and interact with the tools 

without the need to register for a Google Earth Engine account. 

The achievements of this project highlighted the advantages of Google Earth Engine, a 

revolutionary geospatial tool that can process decadal satellite images through customized 

algorithms and cloud computation. The integration of Google Earth Engine, process-based 

models, and analytic tools provided a highly-efficient means to analyze the long-term 

spatiotemporal dynamics of linkages between impervious surface, freshwater fluxes, and 

estuarine health. Through providing new data and tools to better manage coastal land and water 

resources, this project could contribute to a sustainable development strategy that could provide 

needed jobs, stimulate economic activity, minimize the stress on coastal ecosystems, and 

ascertain the sources and timing of freshwater inflows needed to protect the quality and functions 

of coastal natural resource areas in ULM and other coastal regions.   
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1. Introduction  

Over half the Earth’s population now resides in cities (WHO, 2016). Population growth 

and urbanization rates in low elevation coastal zones are outpacing the demographic 

development of peri-urban regions (Neumann et al., 2015). A characteristic indicator of 

urbanization is the increase of impervious surface, a unique land cover category that involves 

paved roads, sidewalks, parking lots, buildings, and other built structures, through which 

precipitation does not readily infiltrate into the underlying soil (Sexton et al., 2013; Weng, 

2012). Impervious surface affects hydrological and energy balances, as well as biological 

composition and ecosystem functions (Sexton et al., 2013). Increase in impervious surface 

results in higher nutrient loads, increased hyposalinity impacts, elevated surface temperature, 

increased peak flow, and accelerated habitat degradation in many urban areas and watersheds 

(Arnold and Gibbons, 1996; Paul and Meyer, 2001), indicating the value of impervious surface 

as an effective indicator of environmental quality. Understanding the spatiotemporal pattern of 

impervious surface has important implications for studies of urban stormwater (Gobel et al., 

2007), urban heat islands (Imhoff et al., 2010), water quality (Brabec et al., 2002), ecosystem 

function (Meyer et al., 2005), population growth (Lu et al., 2006), and community resilience 

(Mignot et al., 2006). Mapping and change detection of impervious surface provide critical 

information to city managers for a range of issues in environmental management and urban 

planning (Weng, 2012). This is particularly important for estuaries along the Gulf of Mexico, 

which represent the transition region between freshwater and marine systems, subjected to both 

terrestrial and oceanic processes by the gradients of salinity and nutrients present (Montagna et 

al., 2011). Estuaries are ecologically and economically important to human society, with ~16% 

of our food produced in the ocean, and 85% of commercially important fish species dependent 

on estuaries for at least one life stage (NRC, 1997). 

Understanding the patterns of coastal urbanization and its ecological and environmental 

implications is critical to the sustainability of Upper Laguna Madre (ULM), a long narrow bay 

that runs south from Corpus Christi Bay past Baffin Bay to the Land Cut. There are no 

significant freshwater flows or cuts from the Gulf of Mexico into the Laguna Madre, resulting in 

prevailing hypersaline conditions and a unique habitat for many important marine species. ULM 

is surrounded by flat coastal plains and barrier islands across five Texas counties: Nueces, 
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Aransas, San Patricio, Kleberg, and Kenedy. Land elevation varies from sea level to 70 m with 

an average slope of 0.5%. Soils are mainly Victoria clay and Orelia fine sandy loam 

(Bumguardner et al., 2013). Major crops include sorghum and cotton (Bumguardner et al., 

2013). Natural vegetation is dominated by woody and emergent herbaceous estuarine wetlands. 

This region has a humid subtropical climate with average annual precipitation and temperature of 

805 mm and 22.3 °C, respectively. The local economy depends heavily on tourism and 

petroleum industry (Irish et al., 2010). The Corpus Christi-Kingsville metropolitan area 

surrounding ULM is a fast-growing coastal area. The total population was 486,820 in 2016, with 

the City of Corpus Christi accounting for 67% of the total. The population has increased by 

52.9% since the 1970s and a further increase of 27.5% is projected by 2050. Data from the 

NOAA Coastal Change Analysis Program indicate significant expansion in both high- and low-

density development concomitant with population growth (Wetz et al., 2016). The continuous 

growth of population and urban areas pose an unprecedented challenge to the management of 

coastal water, land, and biological resources. This challenge is particularly associated with the 

lack of scientific knowledge and tools in several aspects.   

First, the changes of land cover and land use often exhibit spatial heterogeneity, temporal 

nonlinearity, complex interactions with socioeconomic and ecological factors, and feedback to 

local zoning and taxation polices. A variety of remote sensing methods have been proposed to 

characterize and quantify impervious surface from satellite imagery, which can be broadly 

divided into three categories: regression, unmixing, and classification. For example, Torbick and 

Corbiere (2015) employed the Classification And Regress Tree (CART) algorithm to map urban 

sprawl in the northeast United States and showed improvements compared to the National Land 

Cover Database (NLCD). Liu et al. (2018) developed a Normalized Urban Areas Composite 

Index by integrating three multispectral urban indices with nighttime light data and applied this 

new index at the global scale. Piyoosh and Ghosh (2017) enhanced the Biophysical Composition 

Index by incorporating the panchromatic band of Landsat 8 and a flexible search algorithm to 

determine the index threshold. A number of studies successfully used spectral mixing analysis 

(SMA), a process of decomposing the spectral signature of a mixed pixel into a set of end-

members and their corresponding abundances (Kuang et al., 2014; Shi and Wang, 2014; Xu et 

al., 2018). Recently, a number of new technologies have been applied in impervious surface 

mapping, such as unmanned aerial vehicles (Gevaert et al., 2017), LIDAR data (Hamedianfar et 
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al., 2014), cloud computation (Huang et al., 2017), and deep learning (Wang et al., 2015). While 

many global and national remotely-sensed land cover products include urban categories, they 

often have coarse spatial and/or temporal resolutions (Li et al., 2015; Sexton et al., 2013). 

Landsat imagery is often selected as source data for mapping impervious surface, mainly due to 

its availability since the 1980s, sufficient resolution for urban features, and stable revisiting 

frequency (Homer et al., 2004; Midekisa et al., 2017; Xian and Homer, 2010; Xu et al., 2018). 

Milestone reviews on the remote sensing of impervious surface have been provided by Lu and 

Weng (2006), Weng (2012), and Li and Zhou (2017). 

The classification accuracy of impervious surface is the lowest among all land cover 

categories at regional, national and global scales, averaging 40~70% in an assessment of the 

NCLD dataset (Wickham et al., 2013) and <30% in a recent global study (Gong et al., 2013). 

The challenge of accurate impervious surface characterization is in the complex spectral, texture, 

spatial, and temporal characteristics of various development features, which are often presented 

in a latticework of soil and vegetation features. In particular, bare soils are often confused with 

impervious surface due to their similar texture and spectral characteristics. It is difficult to 

differentiate them visually or using the thresholds of existing urban indices (Li et al., 2017; 

Piyoosh and Ghosh, 2017). The misclassification of bare land resulted in noisy, salt-and-pepper 

appearances in the NLCD maps of fractional impervious cover (Sun et al., 2017). Also, per-pixel 

classification methods assign each pixel to only one land cover category and all categories are 

mutually exclusive. These hard classifiers must compartmentalize mixed pixels, a common 

problem in residential areas on medium and coarse spatial resolution images having single pixels 

representing buildings, roads, trees, lawns, and water (Weng, 2012). Subpixel soft classifiers 

have been proposed to address this problem (Hu and Weng, 2011; Lee and Lathrop, 2006), but 

their implementation generally requires high-resolution training data to fully reflect the subpixel 

fractions of the various impervious surface. Furthermore, most classifications are implemented 

for one image at a time or a composite image from stacked images. As the temporal sequence of 

different images are not necessarily incorporated in the classification process, inconsistency 

between classification results cannot be avoided. For example, impervious area identified in one 

year might classify as pervious area in a subsequent year in areas where this change is unrealistic 

(Gray and Song, 2013; Mertes et al., 2015; Schneider and Mertes, 2014). Heuristic approaches, 

applied temporally, are needed to ensure the consistency and stability of the time series of land 
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cover maps (Li et al., 2015). The difficulty with impervious area mapping is further complicated 

in coastal regions, where significant interfering cloud, sparse vegetation and tidal water levels 

introduce additional uncertainties into the interpretation of multi-temporal satellite imagery.  

Second, the applications of high-resolution aerial imagery in coastal mapping and 

assessment are hindered by the lack of radiometric correction approaches. The National 

Agriculture Imagery Program (NAIP) data are available nationwide at the spatial resolution of 

0.6 to 2 meters with very low cloud coverage and consists of repeat images in the growing 

season with 2- or 3-year cycles for more than 15 years (Maxwell et al., 2017). It has been a 

unique choice for a variety of geospatial mapping applications in coastal regions, such as 

analysis of land cover and land use change (Nagel and Yuan, 2016; Shapero et al., 2017; Singh 

et al., 2018), evaluation of ecosystem services (Anderson et al., 2016; Byrd et al., 2018; 

Woodward et al., 2018), monitoring of forest health (Bishop et al., 2014; Hart and Veblen, 2015; 

Hartfield and van Leeuwen, 2018; Liu et al., 2017), and assessment of urban green infrastructure 

(Lee, 2017; Ucar et al., 2018). The NAIP imagery will likely continue to be the one of the best 

data sources for many research and operational efforts that need high-resolution multispectral 

imagery for feature extraction, change detection, or collection of ground truth for validate 

coarse-resolution satellite products.  

While available with low or no cost, the NAIP data have not been recognized and utilized 

as effectively as one might expect, since important challenges in data preprocessing have 

hindered the exploration of this often-overlooked valuable data (Maxwell et al., 2017). 

Compared to satellite imagery programs such as Landsat and MODIS, the NAIP data are 

acquired from aerial platforms using different sensors that have lower radiometric resolutions 

and the information on sensor characteristics is less available and consistent over time (Maxwell 

et al., 2017). Because of the small swath of NAIP images (approximately 7 km × 8 km), the 

acquisition of imagery for one region usually involves multiple flights that may last weeks or 

potentially even months, and the mosaics of NAIP images have artifacts associated with 

atmospheric interference, viewing geometry, illumination, shadows, time of the day, and plant 

phenology (Hogland et al., 2018; Maxwell et al., 2017). More importantly, NAIP images are 

distributed in the format of digital numbers (DNs), which are integer values to facilitate 

computation and transmission and to scale brightness for convenient display (Campbell and 

Wynne, 2011). The number of brightness values within a DN image is determined by the number 
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of bits (e.g., 256 values for an 8-bit NAIP image) available. DNs only express relative brightness 

within the scene, but they lack the physical units that are necessary to understand the optical 

processes behind the observed brightness and the interference of atmosphere. Due to the 

differences in acquisition times and dates, DNs can vary between adjacent image tiles (Maxwell 

et al., 2017). DNs cannot be directly used to examine brightness over time, to match one scene 

with another, to prepare mosaic of large regions, nor to serve models of physical processes such 

as those in agriculture, forestry, and hydrology (Campbell and Wynne, 2011). The conversion 

from DNs to surface reflectance is increasingly understood as a minimum standard for analysis 

ready data in order to ensure consistency when comparing images over time and from different 

sensors (Wulder et al., 2019). This is important to the calculations of many multispectral indices, 

such as the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference 

Water Index (NDWI), which are very sensitive to atmospheric effects. However, many studies 

directly applied NAIP without correction for spectral analysis such as surface water mapping, 

land cover classification and vegetation cover estimation (Byrd et al., 2018; Hart and Veblen, 

2015; Hartfield and van Leeuwen, 2018; Hogland et al., 2018; Lee, 2017; Liu et al., 2017; Nagel 

and Yuan, 2016; Shapero et al., 2017; Ucar et al., 2018; Wu et al., 2019). This is mainly due to a 

lack of easy access to radiometric response data for the sensors used and the lack of methods for 

retrieving surface reflectance from NAIP DN values (Maxwell et al., 2017). 

Third, there is a lack of effective methods for linking coastal human and environmental 

stresses to the responses of habitat and water quality and associated management strategies. 

Analytic methods have been substantially advanced for simulating processes of streamflow, 

groundwater discharge, evaporation, and storms at different scales, as well as examining the 

impacts of human interventions on such processes. The major challenge, however, lies in 

quantitatively translating freshwater changes to geochemical and biological responses of an 

estuarine ecosystem (Montagna et al., 2011). Different methods have been developed to deal 

with this challenge, and preference has been generally given to various statistical regression 

approaches and process-based hydrodynamic and ecological models that involve inflow as a 

component (Gillson, 2011; Kim and Montagna, 2012; Powell et al., 2002; Qiu and Wan, 2013; 

Robins et al., 2005; Sun and Koch, 2001; Yáñez-Arancibia and Day, 2004). However, the 

development, configuration and calibration of these models are often associated with substantial 

data requirements, time commitment, and specialized personnel. Such demands often exceed the 
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expectation of decision makers that require a quick turnaround time in comparing the impacts of 

different strategies.  

Artificial intelligence approaches such as artificial neural networks (ANN) are efficient 

tools to characterize nonlinear stress-response relationships in a variety of complex 

environmental systems, such as oyster norovirus outbreaks (Wang and Deng, 2016), fish 

abundance (Froeschke et al., 2013), PM2.5 exposures (Di et al., 2016), occurrence of toxic algal 

blooms in the Great Lakes (Millie et al., 2012), and suspended sediment load (Melesse et al., 

2011). These studies have shown that ANN models are efficient data-driven methods that can 

produce output with comparable or better performance than other methods including physically 

process-based models, with substantially less data and time requirements. ANN models perform 

best when all patterns contained in the available data are included in the training set and the 

models are not used to extrapolate beyond the range of the training data (Maier et al., 2010). 

Hansen and Salamon (1990) originally described multiple neural networks. Their use as an 

ensemble is an effective way to improve model performance (Chan and Paelinckx, 2008; 

Granitto et al., 2005; Shu and Burn, 2004; Zhou et al., 2002). The ability of ANN ensembles to 

analyze the impacts of freshwater inflow on estuarine water quality and ecosystems is a new 

application. More importantly, previous studies have not considered the combined effects of 

freshwater inflow, precipitation, and evaporation. Such knowledge gaps have been a critical 

obstacle to the development, implementation and evaluation of freshwater polices (Buzzelli et 

al., 2014; Gillson, 2011; Ji and Chang, 2005; Robins et al., 2005). Without a reliable and 

efficient tool to determine the freshwater need of biota, ill-regulated freshwater process could 

result in inadequate inflow with severe damage to fishery or excessive water release that might 

hinder the prosperity of other water-intensive economic sectors. Ecological damage resulting 

from reduced food resources, such as blue-crab and fish for migratory birds such as whooping 

cranes or piping plovers, can be manifested by reduced reproductive success the following year 

(Milne, 1976). 

Current freshwater inflow management policies for ULM is established within the 

context of an estuarine freshwater balance that accounts for both freshwater inputs and losses. 

Freshwater losses are dominated by evaporation from open water surface and the estimated total 

evaporation in ULM often exceeds the total freshwater inputs (i.e., precipitation and surface 

inflows). However, current evaporation estimates rely on inland stations that do not reflect the 
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unique hydrological, geophysical, and climatic conditions of ULM that can affect evaporation. 

For example, compared to inland areas, ULM has both higher wind speed that enhances 

evaporation and high salinity that reduces evaporation. A local evaporation station will improve 

the understanding of the combined effects of these processes and contribute to the development 

of a more robust freshwater balance in ULM. Second, the determination of freshwater 

requirement depends on the quantification of the responses of estuarine water and habitat quality 

to freshwater flux variations. This has been mostly achieved through establishing linear or 

nonlinear regression models for individual species or water quality parameters, as demonstrated 

in the landmark TxEMP model. Google Earth Engine is a revolutionary data mining tool that can 

process decadal satellite images through customized algorithms and cloud computation. The 

integration of Google Earth Engine and artificial intelligence methods could provide a highly-

efficient means to analyze the spatiotemporal dynamics of linkages between impervious 

coverage, freshwater fluxes, and estuarine health status conditions over the long term.  

Therefore, this project was aimed to qualitatively analyze the impact of coastal 

development in the Corpus Christi-Kingsville metropolitan area on water and habitat quality of 

ULM for the past four decades. The objectives of this projected included: i) establishing the first 

evaporation station in ULM and reconstruct the freshwater balance of this estuary; ii) 

characterizing landscape changes around ULM using high-resolution satellite and aerial images 

through Google Earth Engine; iii) analyzing urbanization-induced stress on estuarine water 

quality and habitat using hybrid artificial intelligence, geospatial, and statistical methods; and 

(iv) developing decision support systems to facilitate the quantitative assessment of urbanization 

process and its impact on coastal habitat over long term. Based on GIS-aided platforms, the 

project findings could contribute to a variety of education and outreach efforts and provide 

scientific support to state agencies (TWDB, TCEQ and TPWD) and local decision makers in 

ULM and other coastal regions. 
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2. Hydrological Monitoring and Analysis 

2.1 Estimation of evaporation rate 

A pan evaporation monitoring station (27˚32’38.18”N, 97˚17’03.26”W) was established 

in November 2017. As shown in Figure 2-1, it is the only pan evaporation station located in the 

Upper Laguna Madre and compliments the coverage of two existing pan evaporation stations 

managed by Texas Water Development Board (TWDB) for this region. As shown in Figures 2-2 

to 2-3, the main facilities of this station includes consisted of: (i) two standard Class-A 

evaporation pans equipped with analog gauge and autofill systems (Nova Lynx, Grass Valley, 

CA) for comparing evaporation rates from freshwater and estuarine water, respectively; and (ii) a 

wireless Vantage Pro 2 weather station (Davis Instruments, Hayward, CA) that monitors rain, 

wind speed and direction, temperature, humidity sensors, ultraviolet radiation, and solar radiation 

in a rugged sensor suite (Figure 2-3).  

The evaporation pans were cylinders made of stainless steel. Each pan had a diameter of 

120 cm and a depth of 25 cm. The pans was placed on a carefully leveled, wooden base that was 

away from bushes, trees, and other obstacles which obstruct a natural air flow around the pans, 

thus representing open water in an open area. For each pan, an analog output evaporation gauge 

was used to determine the evaporation rate by measuring the changing water level in an 

evaporation pan. The gauge consisted of a float, pulley, and counterweight attached to a 1000-

ohm potentiometer mounted through a gear assembly in a weatherproof housing. The gauge 

connected to the pan using stainless steel pipe and fittings. The potentiometer was able to 

produce a resistance output proportional to the change of the position of the float, which was 

monitored using a voltage data logger with a system accuracy of  ±0.25% over the 25-cm range. 

The logger was mounted in a waterproof enclosure attached to the outside of the evaporation 

gauge. The clear cover allowed viewing of the current evaporation pan level.  

The pans were refilled using an autofill system. It consisted a digital electronic water 

timer and an automatic float valve. The water timer switches on in the early morning every two 

days , allowing water from an external water tank to flow into the pan by gravity. When the 

water depth reached 20 cm, the float valve would stop, and the timer would shut off until the 

next programmed day. The monitoring system was easy to use and maintain and provided two 
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years of accurate and reliable measurements during the project period. If precipitation occurred, 

it was taken into account in calculating the evaporation at both hourly and daily levels. If the 

rainfall events resulted in the overflow of the pan, the data of the associated 24-hour period were 

excluded.  

The integrated sensor suite of the weather station was placed on the wooden base of the 

evaporation pan. It consisted a rain collector, a temperature sensor, a humidity sensor, an 

anemometer, a solar radiation sensor, and an ultraviolet radiation sensor. Temperature and 

humidity sensors were mounted in a passive radiation shield to minimize the impact of solar 

radiation on sensor readings. The integrated sensor suite sent the data to a station console via a 

low-power radio. Placed inside the cabin of the Laguna Madre Field Station, the console 

recorded sensor data and provided graph and alarm functions for on-site data visualization.  

Since November 2017 and throughout the project period, the station has been operated to 

automatically measure the pan evaporation rate at five-minute intervals and weather conditions at 

30-minute intervals. Regular maintenance and data downloading were conducted by the Center 

for Coastal Studies at a monthly basis. Additional trips were implemented to replace system 

components in the case of device malfunction or weather extremes. 

 

2.2 Reconstruction of freshwater balance 

The rate of evaporation was considered as a function of temperature, humidity, wind, and 

other ambient conditions. Figures 2-4 to 2-9 show the hourly average condition of pan 

evaporation, air temperature, dew point, humidity, wind speed, and solar radiation, respectively, 

in different months from 2017 to 2019. The peak of evaporation (Figure 2-4) tended to occur in 

late afternoon across all months, which was consistent with high temperature (Figure 2-5) and 

strong wind (Figure 2-8).  

Observed daily evaporation rates after quality control were compared to the records from 

an existing station located in Port Aransas, which was managed by University of Texas Marine 

Science Institute station (UTMSI). The data were further converted into quadrangular lake 

evaporation rates by multiplying the pan evaporation rates with the monthly pan-to-lake 

coefficients, following the guideline of TWDB. The resulted evaporation rates were multiplied 
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by the water surface of ULM to yield the volumetric estimates of evaporation. Compared to 

existing estimates that were mainly based on the UTMSI station and other nearby stations 

outside ULM, the evaporation estimates derived from this project were higher in February, 

November, and December, but lower in January, April, May, June, August, and October (Figure 

2-10). Applying the monthly evaporation rates of this project to historical data, the results 

provided the adjusted estimation of evaporation loss of ULM over the past four decades (Figure 

2-11).  

The revised evaporation dataset was coupled with TWDB precipitation and inflow 

datasets to reconstruct the monthly freshwater balance of the Upper Laguna Madre since 1970. 

The calculation of freshwater balance at the monthly scale took into consideration: (i) the 

estimates of combined freshwater inflow to the estuary, consisting of gaged inflows, ungagged 

inflows, returned flows, and diversions (Schoenbaechler et al., 2011); (ii) precipitation on the 

water surface of the estuary; and (iii) adjusted evaporation from this project. The results of 

freshwater balance reconstruction consisted of monthly freshwater loss and gain since January 

1977 (Figure 2-12), providing essential information to analyze the impact of hydrological 

controls on ecosystem system health.  
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Figure 2-1. Map of the Laguna Madre Evaporation Station. 
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Figure 2-2. The construction of the Laguna Madre Evaporation Station. 
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Figure 2-3. The completed Laguna Madre Evaporation Station. 
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Figure 2-4. Hourly average pan evaporation of different months observed at the Laguna Madre 

Evaporation Station.  
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Figure 2-5. Hourly average temperature of different months observed at the Laguna Madre 

Evaporation Station. 
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Figure 2-6. Hourly average humidity of different months observed at the Laguna Madre 

Evaporation Station. 
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Figure 2-7. Hourly average dew point of different observed at the Laguna Madre Evaporation 

Station. 
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Figure 2-8. Hourly average wind speed of different months observed at the Laguna Madre 

Evaporation Station. 
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Figure 2-9. Hourly average solar radiation of different months observed at the Laguna Madre 

Evaporation Station.  
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Figure 2-10. Comparison of original and revised average monthly evaporation in Upper Laguna 

Madre. 
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Figure 2-11. Revised annual freshwater balance of Upper Laguna Madre.  
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Figure 2-12. Revised monthly freshwater balance of Upper Laguna Madre. 
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3. Characterization of Coastal Land Cover and Habitat Changes 

3.1. Generation of reference data 

Pixel-level reference data were generated to represent different land cover and habitat 

categories in ULM (Figure 3-1) using high-resolution aerial images of the National Agriculture 

Imagery Program (NAIP). High-intensity impervious surface was defined as areas with high 

development intensity and >90% impervious surface coverage. These areas primarily consisted 

of highways, road intersections, large parking lots, and large buildings. Low-intensity 

impervious surface was defined as areas with low development intensity and impervious surface 

coverage of 50-90%. These were mainly residential areas with a heterogeneous mixture of 

impervious surface and vegetation. We also incorporated 1/3 arc-second USGS National 

Elevation Dataset to improve the delineation of coastal regions. The collection of reference data 

involved multiple field surveys and analysis of existing land cover datasets from National 

Wetland Inventory (NWI), National Land Cover Database (NLCD), Texas Natural Resource 

Information System (TNRIS), and Texas Statewide Seagrass Monitoring Program for the ground 

truth of different land cover and habitat categories. 

We developed a stratified systematic semi-automatic method for developing reference 

data from aerial images. The study area was divided into uniform 0.05º×0.05º subregions and 

sampling pixels were generated for each land cover category in each subregion through several 

steps (Figure 3-2). First, the centroids of 30-m Landsat pixels were overlaid on the 1-m NAIP 

image. Second, the NAIP image was converted into a binary water/non-water layer using an 

NDWI threshold and the fractional vegetation cover (Fv) was calculated for each Landsat pixel. 

Among pixels with Fv > 0.9, three pixels were randomly chosen as samples for vegetation. Third, 

the NAIP image was converted into a binary vegetation/non-vegetation layer using an NDVI 

threshold and the fractional water cover (Fw) was calculated for each Landsat pixel. Among 

pixels with Fw > 0.9, three pixels were randomly chosen as samples for water. Fourth, among 

pixels with Fv < 0.1 and Fw < 0.1, six pixels were randomly chosen. These pixels were inspected 

and assigned as bare land or high-intensity impervious surface if appropriate. Finally, among 

pixels with 0.1 < Fv < 0.5 and Fw < 0.1, three pixels were randomly chosen. These pixels were 

visually inspected to generate samples for low-intensity impervious surface. The stratified 

random sampling was implemented several times across the subregions to obtain enough 
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samples. Using the NAIP images for 2008, a total of 1,583 sample pixels were obtained for the 

five land cover categories: water (218), vegetation (413), bare land (150), high-intensity 

impervious surface (361), and low-intensity impervious surface (362). Then the developed 

reference data were inspected using NAIP images of 2016 to update pixels with changed land 

cover, resulting in a new reference data set for 2016. 

The NAIP-derived reference data for land cover and habitat changes were enhanced using 

ground surveys with the aid of small unmanned surface vehicles (UAVs). The project team 

deployed multiple platforms (e.g., Inspire 1, Mavic Pro, and Phantom 3) with RGB, near-

infrared, and thermal infrared cameras to cover a variety of representative sites including 

impervious surface, marshes, seagrasses, and tidal flats (Figures 3-3 and 3-4). Ground control 

points were established using the new Trimble Catalyst technology with 0.3-m horizontal and 

vertical accuracies. Flight plans were developed using a combination of DroneDeploy and Pix4D 

Capture. Centimeter-level images were captured through flights at different altitudes, ranging 

from 20 m to 120 m. The images captured by UAVs were mosaicked using the structure from 

motion (SfM) technology in Pix4D Mapper (Figure 3-5). These orthomosaic images were 

upscaled to the resolution of the 30-m Landsat images to generate training samples for 

classification (Figures 3-6 and 3-7). More than 300 GB UAV data were generated from this 

project and significantly improved the quality of our land cover and habitat mapping efforts. 
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Figure 3-1. Reference data across the study area: (a) Landsat TM false color composite (bands 4, 

3 and 2); (b) mean value of the normalized difference vegetation index (NDVI); (c) mean value 

of the modified normalized difference water index (MNDWI); (d) DMSP/OLS stable night-time 

light (NTL) data of 2013. White boxes in (a) indicate 0.05-degree subregions designed for 

obtaining reference data. 

  



29 

 

 

 

Fig. 3-2. Procedures for generating reference data from aerial imagery. (a) Centroids of 30-m 

Landsat pixels are overlaid on 1-m resolution NAIP imagery. (b) Pixels for water are randomly 

selected from pixels with fractional water coverage (Fw > 0.9). Pixels for vegetation are 

randomly selected from pixels with fractional vegetation coverage (Fv > 0.9). (c) Pixels for bare 

land and high impervious surface are selected from pixels with Fv < 0.1 and Fw < 0.1; pixels for 

low impervious surface are selected from pixels with 0.1 < Fv < 0.5.  



30 

 

 

 

Figure 3-3. Field surveys for ground truthing at different sites. 
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Figure 3-4. Examples of UAV images acquired at different sites. 
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Figure 3-5. The processing of UAV images using the structure from motion (SfM) technology in 

Pix4D Mapper.  
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Figure 3-6. The establishment of sampling points through upscaling UAV data to the resolution 

of satellite images for water fraction. 
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Figure 3-7. The establishment of sampling points through upscaling UAV data to the resolution 

of satellite images for vegetation fraction. 
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3.2 Analyzing land cover and habitat changes using a multisource imaging approach 

We developed a hybrid method to estimate annual changes of impervious surface using 

the time series of Landsat images. It builds seasonal composite images within a multi-year 

window, trains a classification model using multiple spectral predictors, and improves the initial 

classification results by temporal filtering.  

(1) Screening of satellite imagery 

Landsat images were screened using a cloud cover threshold of 65%, the average global 

cloud cover over land (Foga et al., 2017). Pixels covered by cloud and shadow were masked out. 

Images with acceptable cloud conditions were grouped based on seasons, defined using a ten-

year time series of the Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974) 

from MODerate-resolution Imaging Spectrometer (MODIS) images over vegetated pixels 

(Figure 3-8). Each calendar year was divided into two seasons: i) summer, from DOY 105 to 

DOY 227, and ii) winter, from DOY 1 to DOY 30 and from DOY 305 and 366 (Figure 3-9). 

Based on their acquisition dates, Landsat images were assigned to winter or summer groups. For 

the mapping of each year, the classification inputs included images in three consecutive summers 

and four consecutive winters across a five-year window centered on the targeted year. For 

example, the classification for year 2003 included images for the summers of 2002, 2003 and 

2004 and images for the winters of 2001-2002, 2002-2003, 2003-2004, and 2004-2005. Images 

acquired between summers and winters (i.e., DOY 31- 104 and DOY 228-304) were removed as 

mapping of impervious surface tended to be more accurate with contrasting spectral response 

from green vegetation. On average, the classification for each year used 12.4 summer images and 

10.1 winter images. The use of multi-annual seasonal groups for classification minimized the 

residual atmospheric effects of cloud contamination and reduced the phenological variations 

within the season (Sexton et al., 2013). The years 2012 and 2013 were excluded due to the gap 

between Landsat 5 and Landsat 8 missions. The year 1989 was also excluded due to the lack of 

summer images. 

(2) Generation of seasonal predictors 

For the winter of each year, the median of each band was calculated from all available 

images. The use of median images instead of individual images minimized the effects of 
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phenological variation and atmospheric correction. The median winter images were preprocessed 

through band-specific standardization and cross-band normalization for six bands with brightness 

temperature excluded. In the standardization process, pixel values in each band were divided by 

an a priori upper limit of that band (Sexton et al., 2013). In the normalization process, the total 

reflectance in each pixel was calculated across six bands for each image and the pixel values 

were then divided by the across-band sum. Both standardization and normalization procedures 

have been used in remote sensing studies for transforming pixel values to a common dynamic 

range and reducing both within-class and inter-annual spectral variations (Luo et al., 2014; 

Sexton et al., 2013; Weng, 2012; Wu, 2004; Yang et al., 2010). Figure 3-10 shows the mean 

surface reflectance of five land cover categories of reference data in the preprocessed median 

winter images. Water pixels were readily identified using the median winter surface reflectance 

due to the unique spectral signature of water in the short-wave infrared region. 

The separation of other land cover categories was augmented by incorporating additional 

seasonal predictors. First, multispectral indices were calculated from the normalized surface 

reflectance to enhance the spectral contrast of impervious and pervious features. The selected 

indices included NDVI, the Modified Normalized Difference Vegetation Index (MNDWI) (Xu, 

2006), and the Normalized Difference Built-up Index (NDBI) (Zha et al., 2003). Specifically, the 

maximum summer NDVI, mean winter MDNWI, and mean winter NDBI were selected as 

seasonal predictors based on exhaustive comparisons of different statistical measures. As shown 

in the spectral space defined by these indices (Figure 3-10), the four land cover categories 

(excluding water) tend to form two groups. Low-intensity impervious surface and vegetation 

show a gradient of variable vegetation abundance, leading to strong positive NDVI values and 

negative MDNWI values. In contrast, high-intensity impervious surface and bare land were 

similar in the absence of vegetation, resulting in low NDVI values and neutral MDNWI and 

NDBI values. To further enhance the separation of high-intensity impervious surface from bright 

bare land, seasonal maximum brightness temperature was incorporated. High-intensity 

impervious surface tended to be warmer than bare soil, particularly in summer. The maximum 

temperature was used instead of the minimum or mean temperature to reduce the disturbance of 

clouds and shadows.  

The predictors for each year were eventually constructed as an 11-band image, consisting 

of nine winter bands (i.e., six bands of normalized median surface reflectance, maximum 
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brightness temperature, mean MNDWI, and mean NDBI) and two summer bands (i.e., maximum 

NDVI and maximum brightness temperature). The inclusion of summer median images did not 

improve classification performance. Also, this seasonal cluster procedure was not affected by the 

number of images available in each year, as the images were classified into seasonal groups and 

the predictors were either seasonal medians or maximum values. As long as the year contained 

enough images for calculating pixel-level median and maximum values, the input to the Random 

Forest model was always an 11-band composite image. 

(3) Classification 

Reference data were randomly assigned to training (70%) and validation (30%) datasets 

for developing a random forest (RF) classifier in Google Earth Engine (GEE). RF classifiers are 

efficient methods for per-pixel classification and have the advantages of small training time and 

easy parameterization (Heydari and Mountrakis, 2018; Midekisa et al., 2017). We set the number 

of decision trees to 50, the bag fraction to 0.5, the minimum leaf size to 1, and the number of 

randomly-selected features at each node as 4. Classification accuracy was evaluated using a 

confusion matrix. Results of sensitivity tests indicate that 50 decision trees were sufficient for 

differentiating five land cover categories and that employing more decision trees resulted in little 

improvement of classification performance. RF parameters were very stable and the difference of 

classification accuracy was about 1% between the worst and the best parameter configurations 

(Pelletier et al., 2016). The trained classifier was applied to the predictor images to retrieve 

initial estimates of annual areas of impervious surface from 1984 to 2017. 

(4) Temporal filtering 

We developed a temporally consistent approach to correct satellite-derived impervious 

surface using a set of pixel-level change detection and correction rules. This approach could 

reduce temporal inconsistency in the results of classification performed separately for each year 

for land cover change analysis. For example, a pixel could switch between impervious and 

pervious conditions multiple times. This type of problems could be caused by spectral similarity: 

(i) between high-intensity impervious surface and bright bare land, particularly near the 

shorelines of estuaries or large inland water bodies, and (ii) between low-intensity impervious 

surface and vegetation, particularly in residential areas with single houses and ample vegetation 

cover. We assume that that the conversion from pervious surfaces to impervious surface is 



38 

 

irreversible. The following rules were applied within a time window of n years to modify pixel 

values (Figure 3-11):  

(a) If a bare land pixel is classified as high-intensity impervious surface at least once in n 

preceding years and at least once in n subsequent years, this pixel is updated as high-

intensity impervious surface in the current year;  

(b) If a vegetation pixel is classified as low-intensity impervious surface at least once in n 

preceding years and at least once in n subsequent years, this pixel is updated as low-

intensity impervious surface in the current year;  

(c) If a high-intensity impervious surface is classified as neither high-intensity 

impervious surface nor low-intensity impervious surface in n subsequent years, this 

pixel is updated as bright bare land, unless this pixel is classified as impervious 

surface for >90% of the study period;  

(d) If a low-intensity impervious surface is classified as neither high-intensity impervious 

surface nor low-intensity impervious surface in n subsequent years, this pixel is 

updated as vegetation, unless this pixel is classified as impervious surface for >90% 

of the study period. 

Rules (a) and (b) were developed to correct for errors of omission. They were 

implemented together for each year of the time series. The process was repeated again once after 

all years were corrected. Rules (c) and (d) were developed to correct for errors of commission. 

They were executed together through a moving window, starting from the most recent year for 

only one pass. Thus, the correction of one year was affected by the correction of its subsequent 

years. The 90% threshold in rules (3) and (4) was used to avoid the over-correction caused by the 

first image in the time series. The size of the correction window was set to three years in this 

study. For other regions, the window size could be adjusted according to cloud cover conditions 

and the availability of seasonal predictor images. 

(5) Results and Discussion  

The confusion matrix of validation is presented in Tables 3-1 and 3-2. The proposed 

hybrid method yielded an overall validation accuracy of ~90% for both 2008 and 2016. The 

results indicate high confidence in identifying water and vegetation. The accuracies for both 

categories of impervious surface were accurately identified with accuracies varying from 87% to 
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93%. The accuracies for the bare land were between 75% and 81%, slightly affected by the 

confusion with high-intensity impervious surface.  

Satellite-derived annual maps of impervious surface provided a spatially-explicit 

understanding of the local urbanization process. Figure 3-12 shows the expansion of impervious 

surface and habitat changes over the same time period. The value of each pixel is the number of 

years that the pixel is impervious during the study period and can indicate the year of the 

development at that pixel. As the development of impervious surface is a unidirectional process, 

the duration of imperviousness essentially reveals the trajectory of the urbanization process. Our 

results revealed two interlinked patterns of urbanization in ULM: (i) intensification, the 

gradually filling of pervious gaps within existing developed areas; and (ii) expansion, the fast 

encroachment of farmlands and natural areas that are fringing urban centers. The intensification 

process occurred mainly within stable urban centers or heavily-developed industrial zones. 

Figure 3-13 shows an example of intensification in northwestern Corpus Christi. The area was an 

established industrial zone with oil refineries and transportation infrastructure centered around 

the country’s sixth largest port. The continuous development over three decades resulted in more 

plants, enhanced port facilities and expanded land transportation infrastructures, coupled with the 

emergence of concentrated residential neighborhoods. In comparison, the expansion process was 

associated with the loss of farmland and natural vegetation. Figure 3-14 shows an example of 

expansion in south Corpus Christi, where substantial low-intensity impervious areas bloomed 

along the Oso Creek indicate the development of large residential communities. For small cities 

and towns such as Kingsville, Robstown and Ingleside, the urbanization process was slow, and 

the high-intensity impervious areas were stable. The observed occurrence of parallel urbanization 

processes confirmed the finding from other metropolitan regions (Li et al., 2015; Schneider and 

Mertes, 2014; Sexton et al., 2013). 

The use of fractional impervious coverage had been proposed to improve the accuracy of 

quantifying impervious surface. These methods usually estimated the fraction of a pixel as 

impervious surface by regression or spectral mixing methods. The estimates of fractional 

impervious coverage could be further grouped into different subcategories to facilitate decision-

making processes. However, the performance of these fractional estimates relied on the quality 

of reference data. Reference data were often generated by on-screen manual digitalization with 

possible support of some automation procedures. Georeferenced municipal data of streets and 
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residence were converted into submeter binary pixels and then aggregated to satellite pixel level 

for estimating percent impervious cover, but it was very challenging to obtain these local data in 

many regions. NLCD data were used as alternative ground truth because it provided a highly 

accurate delineation of bare land and impervious surface. However, this accuracy was mainly 

due to the reference data of NLCD including the National Wetland Inventory (NWI) data that 

were derived from high-standard on-screen digitalization of aerial imagery. For schemes that 

involved the phenological discrimination of impervious surface, the spatial domain needed to be 

confined to humid temperate biomes, where rapid vegetation regrowth distinguished 

intermittently bare soil from persistently bare urban surfaces 

The use of satellite thermal infrared data improved the accuracy of impervious surface 

mapping, mainly due to the unique thermal response of construction materials. In this study, we 

proposed the use of seasonal maximum brightness temperature to improve the separation of 

high-intensity impervious surface from bare land. In coastal regions, as the two categories could 

be highly similar in visible and short-wave infrared regions, classification without using thermal 

bands led to significant over-estimation of impervious surface alone the shoreline. The use of 

brightness temperature helped correct misclassified impervious surface into soil and vegetation 

features (Figure 3-15). The high-intensity impervious surface was warmer than bare land by 1.59 

K and 2.79 K in summer and winter, respectively. Such differences were associated with the 

different specific heat values of construction materials and natural soils, as well as seasonal 

variations of the surface energy balance. The overpasses of Landsat satellites were 

approximately 11 AM of the local time, which was close to the peak of surface net radiation. The 

convenient timing helped to highlight the temperature difference between impervious surface 

and natural soils. 

Furthermore, the proposed temporal filtering approach led to effective improvement of 

the initial classification results. Our method has several unique characteristics. First, two types of 

corrections were designed to address different principles of omission and commission errors, 

respectively. Second, the correction involved two pairs of pervious-impervious categories based 

on spectral similarity, in contrast to the single impervious category in previous studies. Third, the 

use of long-term normal status avoided excessive correction and improves the stability of 

classification results. In this study, the temporal filtering began from the most recent year and 

moved backwards as this year had the largest impervious area. Spatial enhancement such as 
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“majority filtering” was used in combination with temporal filtering, aimed at reducing the of so-

called “salt and pepper” effect. In highly-heterogeneous urban areas, many isolated impervious 

pixels in classification results were indeed consistent with the real landscape and should not be 

removed. Without sufficient validation, spatial filtering could result in excessive smoothing of 

land cover patches and significant distortion of land cover pattern.   



42 

 

 

 

Figure 3-8. Mean NDVI values for natural vegetation and cropland. Data shown are based on the 

MODIS daily surface reflectance (MOD09GA) between 2007 and 2017 at 20 representative 

locations. Error bars indicate standard deviations. 
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Figure 3-9. Landsat images for each year. Each dot indicates an image and its color indicates the 

cloud cover condition of this image. Using the year 2003 as an example, the shaded blue area 

demonstrates the inclusion of three summers and four winters for the classification of a year. 
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Figure 3-10. Spectral signatures of different land cover categories. Subfigure (a) shows the 

average surface reflectance of reference data. Subfigures (b)-(d) show the use of seasonal values 

of multispectral indices to enhance the contrasts between non-vegetated categories and variably-

vegetated categories. Subfigure (e) shows the use of brightness temperature (BT) to improve the 

separation of high-intensity impervious surface from bare land. 
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Figure 3-11. Temporal filtering. Each box denotes a year. In the rules for omission errors, years 

of pervious conditions that occur between consecutive years showing impervious conditions are 

corrected to be delineated as having impervious conditions. In the rules for commission errors, 

years showing impervious conditions that occur after consecutive years of pervious conditions 

are corrected to be delineated as having pervious conditions. Conversion is only allowed either 

(i) between high-intensity impervious surface and bare land or (ii) between low-intensity 

impervious surface and vegetation. 
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Table 3-1. Validation accuracy for the year 2008. VEG, HIS and LIS denote vegetation, high-

intensity impervious surface and low-intensity impervious surface, respectively.  

 Water VEG Bare HIS LIS Use. (%) 

Water 45 2 1 1 5 83.33 

VEG 1 119 0 1 3 95.97 

Bare 3 1 29 3 0 80.56 

HIS 0 2 4 91 4 90.10 

LIS 0 2 3 5 83 89.25 

Pro. (%) 91.84 94.44 78.38 90.10 87.37 89.95 

 

 

Table 3-2. Validation accuracy for the year 2016. 

 Water VEG Bare HIS LIS Use. (%) 

Water 45 7 0 0 2 83.33 

VEG 1 115 3 1 3 93.50 

Bare 1 1 27 4 3 75.00 

HIS 1 1 2 94 3 93.07 

LIS 0 3 2 7 81 87.10 

Pro. (%) 93.75 90.55 79.41 88.68 88.04 88.94 
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Figure 3-12. The growth of impervious surface in ULM over 30 years. 
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Figure 3-13. Expansion of impervious surface in northwestern Corpus Christi. The land cover 

change was dominated by the intensification and filling of existing impervious surface in a 

heavily-developed industrial zone. 
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Figure 3-14. Expansion of impervious surface in south Corpus Christi. The dominant land use 

change was the conversion of agricultural land and natural vegetation into low-density 

impervious surface. 
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Figure 3-15. The effects of including brightness temperature in classification. The location of 

this area is shown in Figure 1. Subfigure (a) shows the 1-m NAIP image. Subfigure (b) shows 

the ground truth generated by on-screen digitalization. Subfigure (c) shows the result based on 

the conventional classification scheme that does not use brightness temperature. Subfigure (d) 

shows the result of the proposed method that includes brightness temperature as predictors. 
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Figure 3-16. Combined changes of coastal impervious surface and habitat in ULM over 30 years. 
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3.3 Enhancing aerial remote sensing analysis through radiometric correction 

We developed a pseudoinvariant near-infrared threshold (PINT) method that can convert 

the digital numbers of NAIP imagery into surface reflectance based on pseudoinvariant (PIV) 

pixels identified from Landsat imagery (Figure 3-17). It assumes that a linear relationship exists 

between digital numbers from a 1 m NAIP image and surface reflectance from a 30 m Landsat 

image for overlapping areas, if the two images are acquired simultaneously and the atmospheric 

condition is homogenous within the scene. The Landsat surface reflectance image is considered 

as a proxy of actual ground-level reflectance measurements for PIV pixels, which follows a 

strategy that has been used for the correction and validation of satellite images with different 

resolutions (Hadjimitsis et al., 2009; Padró et al., 2017). Landsat has been used as a reference 

radiometer against which many other satellite payloads have their performance gauged against. 

The overall uncertainty of Landsat Tier-1 surface reflectance product is on the order of 6-10% 

around the world, depending on spectral channel, underlying atmospheric conditions and 

radiometric calibration characteristics (Vermote et al., 2016; Wulder et al., 2019). The 

correlation between Landsat and MODIS surface reflectance products is high and the bias is 

mostly around 1 to 5% with the largest difference in the blue band (Vermote et al., 2016). 

The procedure of PINT is centered on the identification of PIV pixels that can best define 

the linear transformation between surface reflectance and digital numbers, consisting of several 

steps as shown in Figure 3-18. First, when the targeted NAIP image and the coincident Landsat 

image are determined, a ten-year Landsat collection of TM and ETM+ images at this location is 

rigorously filtered. Images with cloud cover >50% in the scene are discarded. For the rest of the 

collection, pixels detected as clouds or shadows are masked out on each image. In the pixel 

quality band, the value of a pixel indicates the levels of confidence that a cloud and/or shadow 

condition exists at this pixel. Pixels with high cloud or shadow confidence are identified and 

masked out. Then areas within 90 m (i.e., three Landsat pixels) of the edge of the targeted NAIP 

image are excluded to avoid the influence of boundary pixels. The temporal standard deviation 

of the near-infrared band at the pixel level is calculated over the ten years of Landsat images. 

By specifying a percentile of the temporal standard deviation image for thresholding, pixels that 

have sufficiently low variations are identified as potential PIV pixels. Because the NIR band 

tends to have greater variations than the visible bands, it is easier and more robust to identify PIV 

pixels from the NIR band when all bands have the same radiometric resolution. The locations of 
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tentative PIV pixels are aggregated into a mask that is applied to the coincident pair of NAIP and 

Landsat images. The NAIP image is upscaled to the 30-m spatial resolution of the Landsat 

reference image in advance with consideration on the homogeneity of the upscaled pixels. For 

each of the three bands (i.e., red, green and NIR), digital number and surface reflectance are 

extracted at locations of PIV pixels from the NAIP and Landsat images, respectively, and linear 

regression is performed after the removal of outliers. The mean value of the coefficient of 

determination (R2) of three bands is taken as the measure of regression performance. Through 

iteratively testing thresholds starting from 0.01st percentile with an increment of 0.01% until the 

5th percentile, the threshold with the highest mean R2 is determined as the best threshold. Given 

that an NAIP image covers an area of approximately 53 km2 on average or the equivalence of 

about 60,000 pixels at the 30 m resolution, the increment of 0.01% is equivalent to the addition 

of 6 pixels, which is considered to be an appropriate scale for common invariant features. The 

linear transformation models associated with the best threshold are applied to the bands of 

upscaled 30 m NAIP for validation and eventually the original 1-m NAIP image for high-

resolution mapping applications. To validate the performance of PINT, NDVI is calculated using 

the 30 m NAIP surface reflectance and compared to NDVI generated from Landsat surface 

reflectance. Evaluation metrics consist of R2, Nash-Sutcliffe efficiency (NSE), mean absolute 

error (MAE), and root mean square error (RMSE). 

This method is different from previous studies in two aspects. First, the identification of PIV 

pixels only requires the temporally variation of the NIR band, eliminating the need to inspect the 

pixels across all bands for the consistency of spectral brightness. The PIV pixels identified in the 

NIR region are assumed to be spectrally invariant in visible bands as well. The noise components 

of some multispectral bands may have larger amplitude than the signal components of other 

bands (Small, 2002). For Landsat TM and ETM+ sensors, the visible bands record less variation 

and are more affected by residual clouds and snow, in comparison to the infrared bands (Feng et 

al., 2013). Second, the number of PIV pixels varies based on the optimal threshold of each 

image, in contrast to the use of a fixed empirical threshold for all images (Padró et al., 2017; 

Pons et al., 2014). The adaptive scheme of PINT could alleviate the disturbance of nonlinearity 

of the spectral variance and enhance the spectral diversity of PIV features (i.e., pixels are well 

spread other than concentrated in a small range of brightness), all amendable to the robustness of 

the linear regression. 
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Figures 3-19 and 3-20 show the results of applying this method to ULM at two sites. PIV 

pixels were identified in marshes and ship channels to construct the linear transformation. No 

PIV pixels were identified in the tidal flats which had high NIR variations due to the irregularly 

wind-driven inundation, while marshes were less flooded due to their higher elevation. Raising 

the percentile threshold resulted in gradually decreasing R2, but the performance tended to be 

stabilizing after more than 2% of pixels were used. The corrected NDVI yielded a slightly lower 

R2, but RMSE, NSE and MAE were improved significantly. Figures S1 to S4 show additional 

results of other selected test sites. Figure 3-21 summarizes the best NIR thresholds and the 

regression lines that defined these thresholds for all test sites. The average threshold was the 

0.69th percentile, or 0.025 in terms of the actual value of the temporal standard deviation of the 

NIR band. This suggests that approximately 300 pixels on average are needed to define the linear 

relationship between surface reflectance and digital numbers. The 0.01st percentile (five pixels) 

was identified as the threshold for 35 sites and the 0.02nd percentile (ten pixels) for 23 sites. On 

the other end, the thresholds were above 4.5 percentile (i.e., > 2,250 pixels) for ten sites. The 

range of thresholds determined in this study was comparable to the threshold of 0.020-0.027 

recommended for MODIS time series (Padró et al., 2017; Pons et al., 2014). Regarding the 

regression lines, the average slope and intercept were 0.0017 and 0.017 for the NIR band, 

respectively, and 0.00092 and −0.013 for the red band, respectively. For both bands, slope was 

positively skewed, while intercept was negatively skewed. Validation results across all test sites 

show substantial improvement in the NDVI agreement against the Landsat NDVI reference 

(Figure 3-22). The values of RMSE were reduced from 0.37±0.14 to 0.08±0.07. The values of 

MAE were reduced from 0.91±0.64 to 0.18±0.52. The values of R2 were stable: 0.70±0.19 before 

the correction and 0.71±0.20 after the correction. The values of NSE was reduced from 

−41.71±107.68 to −0.65±10.39. The negative mean value of NSE reflects the sensitivity of this 

measure to extreme values. 

The calculation of temporal variation of NIR reflectance is a critical component of the 

PINT method. A key parameter of this procedure is the number of satellite images to be included 

in the calculation. How many years of images are sufficient for identifying PIV pixels? Will 

using more images improve the identification of PIV pixels? Thanks to the multidecadal Landsat 

legacy, we were able to examine the effect of the quantity of Landsat images on the performance 
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of PINT over different durations ranging from two years to 30 years before the acquisition of the 

NAIP image.  

At our study sites, longer durations led to the inclusion of more Landsat images (Figure 

3-23). The changes in the number of images appeared to follow a piecewise linear pattern with a 

reduced slope for durations longer than 12-15 years, suggesting a reduced availability of Landsat 

images prior to 1999-2001 as Landsat 7 was launched in 1999. Changes in the NIR threshold, 

however, were less consistent across the sites. The response of correction performance was 

reflected in the pattern of different measures. The stability of the NIR threshold was not linked to 

the stability of the measures. The measure of NSE appeared to be more sensitive to the number 

of images than other measures. Overall, the use of ten years of Landsat images was sufficient for 

converting digital numbers into surface reflectance and incorporating a longer time series from 

the same sensor didn’t not substantially improve the correction of NDVI in this study. This 

duration of Landsat time series was consistent with the value recommended for the identification 

of PIV features using MODIS time series (Pons et al., 2014) and could be considered as a 

reasonable configuration for the implementation of PINT for other regions. 

The integration of data from multiple sensors on different satellites should enhance the 

robustness of the identification of NIR threshold and facilitate the comparison of PINT to 

existing relative correction approaches. However, the spectral differences among the sensors of 

interest should be taken into consideration. For example, incorporating additional images from 

the Landsat 8 Operational Land Imager (OLI) sensor could considerably increase the temporal 

resolution of time series, but the OLI bands are spectrally narrower than the corresponding TM 

and ETM+ bands, especially in the near-infrared region, which could result in NDVI differences 

of about 5% (Flood, 2014; Zhu et al., 2016). Incorporating images from the Sentinel-2A 

Multispectral Instrument (MSI) sensor is expected have the same problem, as MSI and OLI 

bands are very spectrally similar except in the thermal infrared region. 

The development and validation of PINT in this study was particularly facilitated by the 

use of Google Earth Engine. Traditionally, NAIP images are downloaded as county-scale 

mosaics through the Agriculture Farm Service of the United States Department of Agriculture 

(USDA). Only the data of the most recent year are available on an ArcGIS server. The collection 

of NAIP data for a large region or a long period is often a very time-consuming procedure. 

Through hosting the entire NAIP legacy in cloud storage, Google Earth Engine provides a 
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highly-efficient means to improve not only the accessibility of this unique dataset, but also its 

processing and analysis. The free and open access of NAIP data through Google Earth Engine 

could result in landmark changes in the utilization of NAIP data and its integration with other 

remotely sensed data, an information breakthrough comparable to the initiation of Landsat data 

release in 2008. Also, through Google Earth Engine, the proposed method takes advantage of the 

archives of Landsat 5 and 7 and identifies PIV features based on hundreds of images that fully 

address the temporally spectral variation of ground features. This eliminates the previous efforts 

to calibrate to specific laboratory or field spectra, because the 30-m PIV pixels are stable 

combinations of a variety of materials instead of the pure presence of a single material. 
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Figure 3-17. The conceptual diagram of the pseudoinvariant near-infrared threshold (PINT) 

method. DN and SR stand for digital number and surface reflectance, respectively. 
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Figure 3-18. The flowchart of the proposed PINT method. 
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Figure 3-19. Application of PINT at Site 4 in Upper Laguna Madre. Plots (a) – (d) demonstrate the identification of 

PIV pixels: plot (a) shows the 1-m false-color NAIP image (NIR, red and green bands) before radiometric 

correction; plot (b) shows pseudoinvariant features (white squares) identified from the 10-year NIR standard 

deviation of Landsat TM and ETM+ images; plot (c) demonstrates the identification of the best threshold (0.01st 

percentile); plot (d) shows the linear regressions of Landsat surface reflectance and NAIP digital numbers based on 

pseudoinvariant pixels. Plots (e) – (i) show the validation of NDVI values: plot (e) shows 30-m Landsat NDVI as 

the reference; plots (f) and (h) show 1-m NAIP NDVI before and after correction, respectively; plots (g) and (i) 

show the agreement with Landsat reference before and after correction, respectively. The solid line is the 1:1 line, 

indicating a perfect match between NAIP and Landsat NDVI values, and the dashed lines represent the upper and 

lower 10% error bounds. 
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Figure 3-20. Application of PINT at Site 4 in Upper Laguna Madre. Plots (a) – (d) demonstrate the identification of 

PIV pixels: plot (a) shows the 1-m false-color NAIP image (NIR, red and green bands) before radiometric 

correction; plot (b) shows pseudoinvariant features (white squares) identified from the 10-year NIR standard 

deviation of Landsat TM and ETM+ images; plot (c) demonstrates the identification of the best threshold (0.01st 

percentile); plot (d) shows the linear regressions of Landsat surface reflectance and NAIP digital numbers based on 

pseudoinvariant pixels. Plots (e) – (i) show the validation of NDVI values: plot (e) shows 30-m Landsat NDVI as 

the reference; plots (f) and (h) show 1-m NAIP NDVI before and after correction, respectively; plots (g) and (i) 

show the agreement with Landsat reference before and after correction, respectively. The solid line is the 1:1 line, 

indicating a perfect match between NAIP and Landsat NDVI values, and the dashed lines represent the upper and 

lower 10% error bounds. 
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Figure 3-21. Summary of PIV identification across all validation sites. 

 

 

 

 

 

Figure 3-22. Summary of performance metrics across all validation sites. 
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Figure 3-23. Effect of the length of Landsat time series on the identification of NIR thresholds 

and the quality of the NDVI correction. 
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4. Development of Urbanization Stress Forecasting Models 

Two models were developed to analyze the stresses caused by urbanization processes on 

estuarine health: (1) a nonlinear autoregressive network ensemble with exogenous inputs 

(NRAX); (2) an integrated Markov-Chain Cellular-Automata (MCCA) model. 

 

4.1 NRAX model 

A nonlinear autoregressive network model with exogenous inputs (NRAX) was 

developed to analyze the impacts of urbanization on estuarine water quality changes at the 

seasonal scale from 1985 to 2017 (Figure 4-1). The artificial neural networks developed in this 

project were multilayer perceptron (MLP) networks that were widely used for classification or 

regression (Maier et al., 2010; Wu et al., 2014). A major advantage of MLPs is that given 

sufficient hidden units and training data, they are able to learn an input-output relationship of 

arbitrary complicity (Shu and Burn, 2004). An MLP consisted of an input layer, a hidden layer 

and an output layer. The model used two types of inputs over a six-month antecedent period: i) 

seasonal time series of external forcing, consisting of seasonal evaporation, precipitation, land 

cover change, and population change (Figure 4-2); and ii) seasonal time series of water quality 

variables, including salinity, dissolved oxygen, temperature and turbidity (Figure 4-3). The 

optimal number of neurons in the hidden layer was determined by iteratively comparing the 

performance of different configurations with different number of hidden units (from 5 to 50). 

The output layer had only one neuron that represented the targeted environmental quality 

parameter. Input values were fed to neurons in the input layer and sent to hidden neurons through 

connections associated with weights. The hidden neurons summed the inputs and applied them 

through a transfer function that controls the amplitude of the hidden neuron’s output (Wan et al., 

2015). The output from the hidden layer was then sent to the output layer via connections with 

another set of weights. The final output was generated by the output neuron using a transfer 

function. The hyperbolic tangent sigmoid transfer function (Vogl et al., 1988) was used for both 

hidden and output layers in order to confine the outputs within the range [−1,1]: 
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1 x
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e−
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The constructed networks were trained using the Levenberg-Marquardt backpropagation 

algorithm (Hagan and Menhaj, 1994). This algorithm is a second-order gradient optimization 

method and is faster and more reliable than other backpropagation algorithms (Jeong and Kim, 

2005) and is considered the best method in many ANN studies (Imen et al., 2015; Maier et al., 

2010). For the learning parameters of the backpropagation algorithm, the maximum number of 

training epochs was 300, the minimum performance gradient was 1×10-6, the maximum number 

of validation failures was 6, and the initial µ, µ decrease factor and µ increase factor were 0.001, 

0.1 and 10, respectively. The training of a network stopped when the maximum number of 

validation failures or epochs was reached, the performance was minimized to the goal, or the 

performance gradient fell below the threshold. The performance of network calibration was 

evaluated using the mean squared error function without transformation.  

The established MLPs were combined into ensembles to achieve better prediction 

accuracy, as network ensembles have shown to improve the generalization capability of ANN 

models. Network ensembles are known to improve the generalization capability of ANN models 

(Cannon and Whitfield, 2002; Cianfrani et al., 2015; Jeong and Kim, 2005; Shu and Burn, 2004). 

Linear combination is a commonly used method for combining networks. An ensemble can be 

created from a set of networks via simple averaging or a weighted average that consider the 

relative performance of each network (Shu and Burn, 2004). In this study, for each 

implementation with specified inputs and structure, a total of 500 networks are constructed and 

trained. The networks are ranked by the overall performance that includes network training, 

validation and test stages. Networks with top predictive performance are selected as ensemble 

members, and the ensemble output is the average of outputs from all members. The performance 

of ANN ensembles is compared to multiple linear regression (MLR) models using the coefficient 

of determination (R2), the root-mean-square error (RMSE) and the relative root-mean-square-

error (RRE). The R2 measures the percent of variation of the observed abundance being 

explained by the modeled abundance. The RMSE and RRE measure the deviation of the 

modeled abundance from the observed abundance. These performance indicators are widely used 

in hydrological and environmental modeling studies (Alcázar et al., 2008; Maier et al., 2010; 

Melesse et al., 2011; Qiu and Wan, 2013; Wan et al., 2015; Wu et al., 2014): 



65 

 

 2 1

2 2

1 1

( )( )

( ) ( )

n

i i
i

n n

i i
i i

O O S S

R

O O S S

=

= =

 
− − 

 =
 

− −
 
 



 
 (2) 

 

2

1

( )
n

i i
i

O S

RMSE
n

=

−

=


 (3) 

where n is the number of data points (years) during the period of evaluation, Oi is the observed 

water quality condition, O̅ is the mean of the observed water quality condition, Si is the 

simulated water quality condition, and S̅ is the mean of the simulated water quality condition.  

The 33-year data of the Upper Laguna Madre was divided into ensemble training dataset 

(85%) and validation dataset (15%). The training dataset was further randomly divided into 

network training subset (80%), validation dataset (10%), and test dataset (10%). The training and 

validation performance for seasonal water quality of the Upper Laguna Madre is shown in 

Figures 4-4 to 4-7. The NRAX ensemble approach yielded good estimations for all targeted 

variables, particularly for dissolved oxygen and water temperature with validation R2 above 0.8. 

Even for the estimation of turbidity that had significant monthly variation, the ensemble achieved 

a validation R2 over 0.5. The strong generalization ability of the ensembles is mainly due to two 

reasons. First, the ensembles can capture nonlinear impact-consequence relationships of complex 

systems. The interactions among neurons across different layers are able to assemble the 

interlinked hydrological, geochemical, and biological processes at the interface of riverine and 

estuarine systems, which has been demonstrated in a number of coastal studies. Second, the 

inclusion of evaporation and precipitation at the bay surface improves the quantification of 

estuarine freshwater budget, leading to an improved consideration of the accumulating effects of 

freshwater fluxes on estuarine water quality changes. The NRAX model developed in this project 

could benefit decision makers and researchers in other coastal regions along and beyond the 

Texas Coast. 

Freshwater fluxes interact with an estuary ecosystem primarily through affecting the 

salinity gradient that is the main factor controlling the estuarine community and population 

structure (Montagna et al., 2011). Many studies demonstrated the importance of evaporation and 

precipitation to estuarine salinity. Analytical data from biogeochemical studies in coastal regions 
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have shown a strong control relationship between evaporation and chloride and sodium 

concentrations (Barrie et al., 2015; Mohan and Walther, 2015). In dry seasons or shallow, flow-

restricted parts of the estuary, the concentrating effect of evaporation and the diluting effect of 

precipitation on salinity are even more significant (Montagna et al., 2002; Sumner and Belaineh, 

2005). The effect of evaporation can be exacerbated under extended drought conditions in semi-

arid regions where high evaporation and hypersaline groundwater discharge occur 

simultaneously (Bighash and Murgulet, 2015). This indicates a confounded picture of estuarine 

hydrological conditions, dependent on the competing effects of vertical freshwater fluxes and 

their interaction with lateral riverine inflows. Such an understanding challenges the widely-

accepted dogma that freshwater inflows control estuary salinity gradients. Freshwater inflow has 

little effect on the salinity at the annual scale in large, shallow estuaries, such as in Florida Bay 

(Nuttle et al., 2000), the Upper Gulf of California (Lavin et al., 1998) and several estuaries in 

Northern Australia (Ridd and Stieglitz, 2002), where freshwater inflow was substantially less 

than the direct rainfall onto the bay and significant evaporation occurred in the bay. Lowered 

salinity values ultimately are due to freshwater dilution, but they do not exhibit a clear 

association with freshwater inflow due to the effects of evaporation and other factors (Montagna 

et al., 2011). Overall, annual evaporation in ULM is 141% higher than the total of annual 

precipitation and inflows, indicating a negative freshwater budget over the long term. Compared 

to the great intra-annual variations of freshwater inflows, evaporation and precipitation are more 

temporally stable and spatially uniform, constituting a relatively stable component of estuarine 

freshwater budget and thus a more predictable control on the estuarine salinity gradient. 

Unfortunately, evaporation and precipitation are rarely included in the analytic analysis 

of freshwater-fishery relationships. An important reason might be the lack of long-term adequate 

measurements and analyses. This is particularly so for evaporation. For example, along the 560-

km Texas coastline, there are only four pan evaporation stations located near estuaries available 

for estimating the evaporation from open water in estuarine environments. Large-aperture 

scintillometer and eddy covariance towers have been used for estimating evapotranspiration in 

inland areas, but their applications for measuring evaporation from open water are still limited 

(McJannet et al., 2011). There is also significant uncertainty in estimating regional precipitation 

based on isolated rain gauges at ground stations. In contrast, the measurement of inflow requires 

only a stream gauge and long-time observations have been achieved for many estuaries. From 
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the modeling perspective, the lack of evaporation process has been considered as one of the 

critical shortcomings in coastal hydrodynamic modeling (Li and Hodges, 2015). Our results 

indicate the advantage of including evaporation data to estimate water quality. First, ANN 

ensembles have a strong ability to analyze nonlinear behaviors of complex environmental 

systems. The interactions among neurons across different layers is able to capture the interlinked 

hydrological, geochemical and biological processes at the interface of riverine and estuarine 

systems, as has been demonstrated in several coastal studies (Cianfrani et al., 2015; Froeschke et 

al., 2013; Muñoz-Mas et al., 2014). Second, the inclusion of evaporation and precipitation at the 

bay surface leads to a more thorough analysis of the estuarine freshwater budget and benefits the 

quantification of the accumulative effects of freshwater fluxes on estuarine water quality. This 

suggest that the proposed ANN ensemble approach has the potential to improve the reliability of 

the TxEMP-based estuarine freshwater management strategies. Improved models that more 

accurately identify water needs to sustain coastal ecosystems is critical to best meet 

environmental, potable water, and industrial needs in regions where water is limited (Hill et al., 

2011). 

In addition to its continued, critical role in freshwater policies of Texas, the TxEMP 

model has been extensively analyzed over the world and considered as an important example of 

operational flow criteria (Gillson, 2011; Ji and Chang, 2005; Robins et al., 2005; Sun et al., 

2015; Yáñez-Arancibia and Day, 2004). The effectiveness of this type of models largely rely on 

the quality of the characterized freshwater-species relationship and have profound implications 

on environmental management and ecosystem resilience in many estuarine systems. The 

proposed ANN ensemble method could improve the TxEMP model and support estuarine 

management. From a technical perspective, ANN ensembles has a strong predictive ability for 

nonlinear systems and can enhance the overall reliability and applicability of TxEMP-based 

management frameworks. It represents a growing interdisciplinary integration between biology 

and information science to take advantage of the breakthroughs in machine learning. From the 

operational perspective, the implementation of ANN ensembles is highly efficient at a very low 

cost, compared to the resource demand of physically-based process models. From a perspective 

of knowledge translation, the concept of ANN is well-accepted and easy to understand, making it 

friendly to a wide range of decision makers and stakeholders. Therefore, the ANN ensemble 

approach developed in this study could benefit decision makers and researchers beyond the 
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context of the Gulf Coast. As with other modeling approaches, ANN models are reliable only 

under the range of conditions that are included in the training set. The established input-output 

linkages cannot be assumed valid in extrapolation for future scenarios that are beyond the range 

of the training set.  
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Figure 4-1. The framework of ensemble forecasting for estuarine water quality. 
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Figure 4-2. Monthly conditions of (a) evaporation and precipitation rates and (b) standardized 

urbanization rate. 
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Figure 4-3. Monthly conditions of (a) water temperature and salinity and (b) dissolved oxygen 

and turbidity. 
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Figure 4-4. Performance of NARX model for seasonal dissolved oxygen of ULM. The left and 

right plots shown training and validation performance, respectively. Output and Target denote 

ensemble results and observation data, respectively, normalized into the range [-1, 1].  
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Figure 4-5 Performance of NARX model for seasonal salinity of ULM. The left and right plots 

shown training and validation performance, respectively. Output and Target denote ensemble 

results and observation data, respectively, normalized into the range [-1, 1]. 
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Figure 4-6. Performance of NARX model for seasonal water temperature of ULM. The left and 

right plots shown training and validation performance, respectively. Output and Target denote 

ensemble results and observation data, respectively, normalized into the range [-1, 1]. 
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Figure 4-7. Performance of NARX model for seasonal turbidity of ULM. The left and right plots 

shown training and validation performance, respectively. Output and Target denote ensemble 

results and observation data, respectively, normalized into the range [-1, 1]. 
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4.2 MCCA model 

An integrated Markov-Chain Cellular-Automata model was developed to generate the 

forecasting of coastal urbanization and habitat changes. Markov Chain is an effective approach 

to estimate future change based on the past, while Cellular Automata is spatially explicit method 

to estimate where the change would occur. The combination of the two methods have been 

recognized a powerful modeling technique for the simulation of land cover changes at different 

scales.  

The performance of MCCA models is often subject to limitations in identifying clear 

transition rules. In contrast to the short period (i.e., 10-15 years) in existing studies, the multi-

decade span effectively in this project reduced the uncertainty in transition demand, i.e., the total 

amount of land-use change occurring in each time step among different land use categories. The 

raster schematization of the upper Laguna Madre region was achieved by examining the 

upscaling of Landsat image pixels in the range of 90-300 meters. Such resolutions were 

considered sufficient to reflect the fragmentation, degradation and conversion of habitat features 

and the growth of impervious surfaces in coastal environments. The model development 

emphasized: (i) the definition of an initial cell status based on land cover time series derived 

from satellite images; (ii) the iterative generation of a new cell status at each successive temporal 

step (i.e., one year or longer); and (iii) the time invariant functions for defining how the new 

status of a cell was determined by its previous status and the status of cells in its neighborhood. 

Cells of non-urban land were available to be replaced by cells of urban land, but the inversible 

process were not allowed to occur. Two schemes of the growth of urban land cells were 

considered in this study: random expansion and rule-based expansion. The random scheme 

assigned equal urbanized probability to all available cells. The rule-based scheme followed 

rational criteria, which was an urbanization probability matrix of all land cover categories 

derived from the 30-year land cover time series with consideration on the distance to shoreline, 

elevation and slope, the total number of contiguous urban cells, and the total number of urban 

cells in the neighborhood. 

In this project, the predictor variables addressed a set of natural and anthropogenic factors 

such as: distance to impervious surface, distance to major roads, distance to preserved areas such 

as parks and recreational areas, distance to waterbodies, elevation, and slope (Figure 4-8 and 

Supplementary Information). The model described the transition among multiple coastal land 
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cover categories including developed open space, developed surface, barren land, forest/woods 

wetland, shrubland, grassland, cropland, pasture, woody wetlands, and herbaceous wetlands. The 

transition areas and probabilities determined from Markov Chain analysis using two prior land 

use maps established the quantity of expected land cover change from each existing category to 

each of other categories in the next time period (Tables 4-1 and 4-2). 

Patterns of suitability for difference land cover categories were produced using multi 

criteria evaluation, which combined a set of criteria images to achieve a single composite basis 

for a decision according to a specific objective (e.g., a single suitability map from which the final 

choice will be made). This information established the inherent suitability of each pixel for each 

land cover type. A contiguity filter was used to adjust the suitability of pixels far from existing 

areas of that class (as of that iteration), thus giving preference to contiguous suitable areas. This 

filter was integral to the action of the Cellular Automata component. It automatically normalized 

the filter kernel to force the values to sum to 1. It was passed over a Boolean image for each 

class from the current land cover image within each iteration. The net effect was that to be a 

likely choice for land cover conversion, the pixel must be both inherently suitable and near to 

existing areas of that class. 

Figure 4-9 shows an example of the conditional probability maps derived from historical 

land cover changes. These maps indicate the probability that each land cover type would be 

found at each pixel after the specified number of time steps in forecasting. Within each time step, 

each land cover was considered as a target category, and all other land cover categories 

competed for land within the target category. The cellular automat component provided the filter 

for the Markov-chain component for down-weighting the conversion suitability of pixels that 

were distant from existing land cover categories under consideration, resulting in the pixel-wise 

quantification of a likely choice for land cover conversion. The conditional probability maps of 

other change classes are presented in Supplementary Information. The MCCA model was 

implemented to generate the forecasting of ULM habitat change under urbanization from the 

baseline using present situation (Figure 4-10).  
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Figure 4-8. The predictor variables based on the distance to impervious surface. Other predictor 

variables are presented in Supplementary Information. 
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Table 4-1. Matrix of transition areas. 

  Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 

Class 1 2729510 296 283 4706 1887 1837 3260 387 7236 

Class 2 0 517549 0 0 0 0 0 0 0 

Class 3 0 17379 366667 0 0 0 0 0 0 

Class 4 20853 2419 423 191803 132 293 2000 387 43291 

Class 5 1395 3844 2326 112 801850 46861 6537 600 13906 

Class 6 1054 6143 3044 615 66937 4050452 19692 14363 415 

Class 7 860 11998 4505 1728 2136 39342 1113206 9979 553 

Class 8 1295 22913 10378 3731 6952 51726 30838 6388641 355 

Class 9 21890 1799 694 218 32435 1086 584 73 883465 

 

 

Table 4-2. Matrix of transition probabilities. 

  C1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 

Class 1 0.9928 0.0001 0.0001 0.0017 0.0007 0.0007 0.0012 0.0001 0.0026 

Class 2 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Class 3 0.0000 0.0453 0.9547 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Class 4 0.0797 0.0092 0.0016 0.7332 0.0005 0.0011 0.0076 0.0015 0.1655 

Class 5 0.0016 0.0044 0.0027 0.0001 0.9139 0.0534 0.0075 0.0007 0.0158 

Class 6 0.0003 0.0015 0.0007 0.0001 0.0161 0.9730 0.0047 0.0035 0.0001 

Class 7 0.0007 0.0101 0.0038 0.0015 0.0018 0.0332 0.9400 0.0084 0.0005 

Class 8 0.0002 0.0035 0.0016 0.0006 0.0011 0.0079 0.0047 0.9803 0.0001 

Class 9 0.0232 0.0019 0.0007 0.0002 0.0344 0.0012 0.0006 0.0001 0.9376 
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Figure 4-9. The conditional probability map of the change class 6. The maps of other change 

classes are presented in Supplementary Information.  
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Figure 4-10. Projected condition of future land cover and habitat in ULM. 
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5. Outreach and Decision Support 

5.1 Outreach 

Aligned with the activities of the Aquatic Education Program (AEP) at the Center for 

Coastal Studies, the project team translated research findings into a protocol of educational 

materials targeted at grade 6-12 students. The designed class activities are centered on the hands-

on practice of building a comparative “Impervious vs. Permeable” urban-rural substrate model 

and observing the change in runoff and its contaminant-carrying compacity in different settings. 

 

Academic Question: 

• How does the increase of impervious surfaces effect runoff and contribute to the 

enhanced export of contaminants? 

 

Objective: 

• To design and model an urban and rural substrate. 

• To observe runoff in both an urban (impervious) setting and a more rural (permeable) 

environment. 

 

Background: 

• Over half the Earth’s population now resides in cities. Population growth and 

urbanization rates in low elevation coastal zones are particularly outpacing the 

demographic development of inland regions. A characteristic indicator of 

urbanization is the increase of impervious surface, a unique land cover category that 

involves paved roads, sidewalks, parking lots, buildings, and other built structures, 

through which precipitation does not readily infiltrate into the underlying soil.  

• Impervious surface affects hydrological and energy balances, as well as biological 

composition and ecosystem functions. Increase in impervious surface results in higher 

nutrient loads, increased hyposalinity impacts, elevated surface temperature, 

increased peak flow, and accelerated habitat degradation in many coastal urban areas 

and watersheds.  
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• The Corpus Christi-Kingsville area surrounding the Upper Laguna Madre is a fast-

growing coastal area in Texas. Since 1970, its population and impervious coverage 

have increased by 53% and 45%, respectively. The population is projected to have a 

27.5% increase by 2050, which could result in the addition of more than 100 km2 of 

impervious surface and an unprecedented challenge to ecosystem health and 

resilience.  

 

Materials: 

• Disposable foil bread pan  

• Several small sponges ½ inch in height 

• Scissors 

• Spray Bottle of water 

• Dark colored flavor of “Kool Aid” packet 

• Light colored can of “Play-do” molding clay 

• ½-1 inch thick book 

 

Process: 

• Begin with a brief discussion of urban and rural environments and guide the students 

in how their respective “substrates” are different (soil/concrete).    

• Have them also discuss how the different areas have been altered by nature and 

humans, and how rainfall collects and/or runs off.   

 

Rural Model: 

• Have the students design a rural environment by adding and shaping sponges to fit 

one side of the aluminum pan and leaving the other side empty.  The sponges will 

represent the more permeable soils found in urban areas.  Have the students tilt up the 

sponge end of the pan on a book to raise this end approximately 1 inch to represent 

the gradient towards the open water end.  Have the students fill their spray bottle to 

the top and then gently spray the water onto the land portion of the model.  Observe 

how the rural permeable surface absorbs quite a bit of the water.  Sprinkle a bit of the 

package of “kool aid” to represent possible contamination added to the substrate and 
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again add more water.  When the color from the “contaminants” begin to wash into 

the open water area of the pan (bay or lake), record the volume of water used from 

within the spray bottle.   

 

Urban Model:    

• Have the students rinse and clean their sponges and pan from the previous rural 

model.  Once done, refill their spray bottle to the top with water.  Rebuild the model 

like the previous model only this time flatten out the “play-do” (to simulate concrete) 

and cover over the sponges.  Be sure to extend the play-do all the way to the edge of 

the open bay/lake area.  Spray some water and observe how much of the liquid rushes 

off to the open area.  Add the “kool-aid” contaminants and continue to spray until 

color is observed and collected in the open area.  Record the volume of water used 

from within the spray bottle. 

 

Application: 

• This simple experiment should demonstrate how more impervious surfaces increase 

runoff and can lead to the enhanced export of contaminants to local bodies of water. 

 

Evaluation/Extension 

• Have the student research wetland functions and values and repeat the process adding 

various smaller wetlands and/or depressions. 

• Have the students prepare water drainage questions to ask a representative from the 

local water drainage department. 

• Have the students prepare a list of potential contaminants from both rural and urban 

environments.  

 

Time Frame: 

•  One class period 

 

Grade Level: 

•  6-12 
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5.2 Decision support 

Integrated decision support systems were developed using the state-of-the-art technology 

of Google Earth Engine Apps. It provides an effective means to create dynamic, publicly 

accessible user interfaces that can visualize and demonstrate the geospatial datasets for users. It 

allows the researches to take the advantage of a variety of interface elements and functions, 

leverage GEE’s data catalog and analytical power, assimilate customized research from multiple 

tasks, and engage stakeholders of both experts and non-experts alike. Through accessing client-

side user interface (UI) widgets to construct graphical interfaces, the decision support systems 

can include simple input widgets like buttons and checkboxes, more complex widgets like charts 

and maps, panels to control the layout of the UI, and event handlers for interactions between UI 

widgets. Decision support systems based on GEE Apps are publicly accessible to the world from 

the application-specific URL generated at time of publishing. All users can view and interact 

with the tools without the need for register for a GEE account.  

The decision support systems developed in this project employed a variety of widget and 

layout tools from Google Earth Engine Apps, such as ui.Lable, ui.Button, ui.Checkbox, ui.Slider, 

ui.DateSlider, uiTextbox, ui.Select, ui.Chart, ui.Map, ui.Map.Layer, ui.Map.Linker, ui.Panel, 

ui.SplitPanel. In particular, ui.Slider and ui.DateSlider allowed a user to adjust a slider to get a 

number within the slider range. The range of slider was configured using either the constructor or 

by setting properties of the slider (e.g., dates). The ui.DateSlider was useful for presenting a 

collection of geospatial data such as satellite images acquired in different years. Also, the 

ui.Map.Linker was used to synchronize the movement of multiple maps, so a user could easily 

compare different images (e.g., satellite images and aerial images) across different scales on the 

same screen. Many of these functions were tested in advance during image analysis and change 

detection (Figure 5-1). These preliminary efforts improved the efficiency of research tasks and 

gained valuable experience for develop the interface of decision support systems. 

A set of three decision support systems were developed, including DSS1 – Data 

Management, DSS2 – Urbanization, and DSS3 – Habitat Change. DSS1 focuses on a systematic 

demonstration of the image data (Figure 5-2). The left panel shows the 34-year annual 30-m 

satellite data including three layers: RGB, NDVI and NDWI. The satellite data consist of 30-m 

Landsat 5 TM (1984-2012, ), Landsat 7 ETM+ (1999-present), and Landsat 8 OLI (2013-
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present) imagery, across a number of spectral bands: blue, green, red, near-infrared, and shore-

wave infrared. The right panel shows the shows the biannual 1-m NAIP aerial imagery (2004-

present, 3 or 4 bands). When a user clicks any point on the left panel, a time series chart will be 

generated to exhibit the change of surface reflectance and spectral indices over 30 years. In each 

panel, by using the date slider, a user can review the image of a particular year of interest and 

have an unprecedent experience of the coastal change in ULM over time. More importantly, as 

DSS1 is dynamically linked to the catalog of GEE, it will be automatically updated if new 

satellite or aerial images have been acquired and added to GEE. This ensures a better 

applicability and suitability with minimum maintenance cost, compared to other coastal decision 

support tools that are often affected by resource constraints and time lags due to local data 

storage and management.  

DSS2 focuses on the spatial pattern and temporal characteristics of urbanization in ULM 

(Figure 5-3). The dataset shown is the age of impervious surface that consists of seven five-year 

categories, which is an important output of this project. As the development of impervious 

surface is a unidirectional process, the duration of imperviousness essentially reveals the 

trajectory of the urbanization process. Urban areas developed before 1984 would have the 

maximum duration. Newly-built areas are younger, and their ages suggest the timing of their 

construction. Through viewing the expansion of impervious surface in ULM across space and 

over time at different scales, a user can understand two fundamental interlinked patterns of 

urbanization: (i) intensification, the gradually filling of pervious gaps within existing developed 

areas, and (ii) expansion, the fast encroachment of farmlands and natural areas that are fringing 

urban centers.  

DSS3 focuses on the change of habitat coupled with coastal urbanization (Figure 5-4). 

The dataset shown consisted over 40 types of changes among different habitat and land cover 

categories, demonstrating both the loss and gain of each habitat at the pixel level. A detailed 

legend of these change classes is presented in the widget to help users to understand the specific 

meaning of each color in the map. The base map layer of the system can be changed by the user, 

switching between a plain map with more details of roads and settlements or a satellite map with 

more landscape information.   
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Figure 5-1. A prototype of the land cover classification tool bases on Google Earth Engine. 
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Figure 5-2. The interface of Decision Support System 1 - Data Management. The system is 

accessible at: https://huazhang211.users.earthengine.app/view/ulm-dss-1. 

  

https://huazhang211.users.earthengine.app/view/ulm-dss-1
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Figure 5-3. The interface of Decision Support System 2 - Urbanization. The system is accessible 

at: https://huazhang211.users.earthengine.app/view/ulm-dss-2. 

  

https://huazhang211.users.earthengine.app/view/ulm-dss-2
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Figure 5-4. The interface of Decision Support System 3 – Habitat Change. The system is 

accessible at: https://huazhang211.users.earthengine.app/view/ulm-dss-3. 

  

https://huazhang211.users.earthengine.app/view/ulm-dss-3
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6. Conclusions 

Ample studies have shown that the expansion of impervious surface is associated with 

the health and productivity of estuarine ecosystems, but the pattern and trend of this effect is not 

well understood at the regional scale and over the long term. A better understanding of the 

dynamics of this stress is essential toward increasing public awareness, developing sustainable 

strategies for land use planning, and managing freshwater inflows, nutrients, and sediments 

entering the estuaries. By understanding the spatiotemporal dynamics of impervious surface and 

its linkages to water quality degradation and habitat fragmentation, we can better understand 

what strategies and practices are needed to minimize the stress caused by coastal development. 

This project aimed to qualitatively analyze the impact of coastal development in the Corpus 

Christi-Kingsville metropolitan area on the water and habitat quality of ULM over the past four 

decades. Project activities consisted of several interlinked tasks over two years, starting with 

hydrological monitoring and analysis, transitioning into comprehensive remote sensing and 

predictive modeling, and culminating in outreach and decision support efforts. 

The hydrological monitoring efforts resulted in the establishment of the first evaporation 

pan station in ULM. Observations at this station provided essential information to estimate 

monthly evaporation rates in the shallow, hypersaline ULM. Such results were extended to adjust 

an existing state freshwater dataset that was mainly based on evaporation stations outside UTM. 

The results led to the reconstructed monthly freshwater balance of ULM since January 1977. 

Long-term landscape changes in ULM and its neighborhoods were characterized using a 

combination of satellite and aerial imagery using Google Earth Engine. Ground truth was 

established based on data from field surveys using small unmanned aerial vehicles and historical 

images from the National Agriculture Imagery Program. We developed a hybrid method to 

estimate annual changes of impervious surface using the time series of Landsat imagery. It built 

seasonal composite images within a multi-year window, trained a classification model using 

multiple spectral predictors, and improved the initial classification results by temporal filtering. 

We further developed a pseudoinvariant near-infrared threshold method for converting digital 

numbers into surface reflectance based on pseudoinvariant pixels identified from Landsat 

imagery.  
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The extensive remote sensing efforts provided inputs to the development of different 

analytic models for analyzing urbanization-induced stress on estuarine water quality and habitat, 

including: (i) a nonlinear autoregressive network ensemble with exogenous inputs as a cost-

effective tool to characterize nonlinear relationships; (ii) an integrated Markov-Chain Cellular-

Automata model as a spatially-explicit tool to estimate the evolution of landscape. These 

predictive tools could generate future patterns of land cover and habitat under different scenarios 

of environmental change and socioeconomic development, providing essential information for 

the planning and management of coastal land and water resources.  

Finally, a set of decision support systems was established for enhancing the awareness of 

urbanization process and its impact on coastal ecosystems. Built on Google Earth Engine Apps, 

these decision support systems are publicly accessible to the world, and users can view and 

interact with the tools without the need to register for a Google Earth Engine account. 

The achievements of this project highlighted the advantages of Google Earth Engine, a 

revolutionary geospatial tool that can process decadal satellite images through customized 

algorithms and cloud computation. The integration of Google Earth Engine, process-baes 

models, and analytic tools provided a highly-efficient means to analyze the spatiotemporal 

dynamics of linkages among regional impervious surface, freshwater fluxes, and estuarine health 

over the long term. Results this project have been disseminated through peer-reviewed papers 

and GIS platforms. They could provide scientific support to state agencies and local stakeholder 

in ULM and other coastal regions and inform the development of effective management and 

conservation strategies.  

Overall, this project provided an improved understanding of long-term environmental and 

ecological consequences of urbanization in ULM. The data and tools derived from this project 

could help scientists and managers to better manage coastal land and water resources and to 

ensure adequate and appropriately-timed freshwater inflow to the environment. In doing so, this 

project contributed to the development of sustainable development strategies that could provide 

needed jobs, stimulate economic activity, minimize the stress on coastal ecosystems, and 

ascertain the sources and timing of freshwater inflows needed to protect the quality and functions 

of coastal natural resource areas in ULM. Through generating the first dataset of 35-year changes 

of impervious surface and estuarine habitats and disseminating them through online GIS 

platforms, this project provided the public with a real-world example with comprehensive 
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materials to link regional, long-term urbanization processes to the overall health of coastal 

ecosystems. The deliverables of this projected could help fulfill the public need to know the 

health of their bays and estuaries and the complex effects of urbanization on various coastal 

natural resource areas.  
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Supplementary Information 

 

 

Figure S1. Application of PINT at the test site 3. 
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Figure S2. Application of PINT at the test site 4. 
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Figure S3. Application of PINT at the test site 5. 
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Figure S4. Application of PINT at the test site 6. 
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Figure S5. Predictor variables for the MCCA model.  
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Figure S6. Conditional probability maps for the change classes 1, 2, 3, and 4 from the MCCA 

model. 

  



112 

 

 

 

Figure S7. Conditional probability maps for the change classes 5, 7, 8, and 9 from the MCCA 

model. 

 

 


