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Executive Summary 

Due to the growing demand for high-quality oysters, it is becoming increasingly important to identify new, 
optimal sites with the best biophysical conditions for oyster reefs in Matagorda Bay. Oyster Habitat 
Suitability Index (OHSI) models evaluate habitat quality and may greatly aid restoration projects. 
Environmental and water quality indicators (WQIs) are used to generate these OHSIs. In this study, we 
extracted WQIs from remote-sensing data during the period from 2014 to 2023 (Section I), then used these 
data to produce five OHSI models for Matagorda Bay (Section II). 

Remote-sensing datasets offer a unique opportunity to observe spatial and temporal trends in WQIs—such 
as chlorophyll-a, salinity, and turbidity—across various aquatic ecosystems. In this study, we used available 
in-situ WQI measurements (chlorophyll-a: 17, salinity: 478, and turbidity: 173) and Landsat-8 surface-
reflectance data to examine the capability of empirical and machine-learning (ML) models to retrieve these 
indicators over Matagorda Bay, Texas, between 2014 and 2023. We employed 36 empirical models to 
retrieve chlorophyll-a (12 models), salinity (2 models), and turbidity (22 models) and four ML families—
deep neural network, distributed random forest, gradient boosting machine, and generalized linear model—
to retrieve salinity and turbidity. We used the Nash-Sutcliffe efficiency coefficient, correlation coefficient 
(r), and normalized root mean square error to assess the performance of empirical and ML models. Results 
indicate that (1) the empirical models were minimally effective when applied over Matagorda Bay without 
calibration; (2) once calibrated over Matagorda Bay, the performance of the empirical models improved 
significantly; (3) ML models outperformed calibrated empirical models when used to retrieve turbidity and 
salinity; and (4) the deep neural network family outperformed all other ML families when used to retrieve 
salinity.  

We then generated five OHSI models over Matagorda Bay during the period from 2018 to 2023 on both 
monthly and annual scales. Each model used five physical parameters (model inputs): salinity, turbidity, 
water temperature, depth, and water velocity. OHSI1 is a classification-based overlay model, classifying 
habitat quality in each model input based on specific thresholds that define unsuitable, moderate, and 
optimal habitat conditions. OHSI2 is a regression-based nonlinear model that regressed these inputs against 
total live oyster count to depict habitat quality. Both OHSI1 and OHSI2 were implemented through 
unweighted and weighted versions. OHSI3 is a ML-based model that uses total live oyster count as a target. 
OHSI scores from all models demonstrated spatial and temporal variability in habitat quality. Across all 
models, optimal habitat was generally found in shallower regions, near freshwater sources, and in areas 
with high water flow. Unsuitable habitat was typically identified in the primary bay, characterized by greater 
water depths, higher salinity, and slower water flow. OHSI1 indicated that spring and fall were optimal for 
oysters, while winter was unsuitable. OHSI2 identified winter months as optimal and considered summer 
unsuitable. Conversely, OHSI3 found the most suitable conditions in summer and determined that spring 
and late fall were unsuitable. 

The developed approach provides a reference context, a structured framework, and valuable insights for 
using empirical and ML models and Landsat-8 data to retrieve WQIs over aquatic ecosystems. The modeled 
WQI data could be instrumental in expanding the footprint of in-situ observations and improving current 
efforts to conserve, enhance, and restore important habitats in aquatic ecosystems. OHSI models generated 
from this study offer valuable insights into long-term habitat restoration activities in Matagorda Bay. 
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 Section (I)* 
Monitoring Water Quality Indicators over Matagorda Bay, Texas, Using Landsat-8 

(*) based on article that is currently under review (Bygate, M., Ahmed, M., 2024, Monitoring Water 
Quality Indicators over Matagorda Bay, Texas Using Landsat-8. Remote Sensing). 

1.1. Abstract 

Remote sensing datasets offer a unique opportunity to observe spatial and temporal trends in water quality 

indicators (WQIs), such as chlorophyll-a, salinity, and turbidity, across various aquatic ecosystems. In this 

study, we used available in-situ WQI measurements (chlorophyll-a: 17, salinity: 478, and turbidity: 173) 

along with Landsat-8 surface reflectance data to examine the capability of empirical and machine-learning 

(ML) models in retrieving these indicators over Matagorda Bay, Texas, between 2014 and 2023. We 

employed 36 empirical models to retrieve chlorophyll-a (12 models), salinity (2 models), and turbidity (22 

models) and four ML families—deep neural network (DNN), distributed random forest, gradient boosting 

machine, and generalized linear model—to retrieve salinity and turbidity. We used the Nash-Sutcliffe 

efficiency coefficient (NSE), correlation coefficient (r), and normalized root mean square error (NRMSE) 

to assess the performance of empirical and ML models. Results indicate that (1) the empirical models 

displayed minimal effectiveness when applied over Matagorda Bay without calibration, (2) once calibrated 

over Matagorda Bay, the performance of the empirical models experienced significant improvements 

(chlorophyll-a: NRMSE: 0.91 ± 0.03, r: 0.94 ± 0.04, NSE: 0.89 ± 0.06; salinity: NRMSE: 0.24 ± 0, r: 0.24 

± 0, NSE: 0.06 ± 0; turbidity: NRMSE: 0.15 ± 0.10, r: 0.13 ± 0.09, NSE: 0.03 ± 0.03), (3) ML models 

outperformed calibrated empirical models when used to retrieve turbidity and salinity, and (4) the DNN 

family outperformed all other ML families when used to retrieve salinity (NRMSE: 0.87 ± 0.09, r: 0.49 ± 

0.09, NSE: 0.23 ± 0.12) and turbidity (NRMSE: 0.63± 0.11, r: 0.79 ± 0.11, NSE: 0.60 ± 0.20). The 

developed approach provides a reference context, a structured framework, and valuable insights for using 

empirical and ML models and Landsat-8 data to retrieve WQIs over aquatic ecosystems. The modeled WQI 

data could be used to expand the footprint of in-situ observations and improve current efforts to conserve, 

enhance, and restore important habitats in aquatic ecosystems.  

1.2. Introduction 
Collecting and analyzing water quality (WQ) data is crucial for assessing spatiotemporal trends in the 

health of aquatic ecosystem. WQ has a substantial impact on the wellbeing of the human population and 

the species that rely on these ecosystems (Bugica et al., 2020; Silva et al., 2022; Strobl & Robillard, 2008; 

Wilber & Bass, 1998). Water quality indicators (WQIs) are specific parameters used to assess the WQ in 

various ecosystems (Kumar & Dua, 2009; Misaghi et al., 2017). These indicators include parameters such 
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as temperature (Kannel et al., 2007; Mishra et al., 2021), dissolved oxygen (DO) (Kannel et al., 2007; 

Mishra et al., 2021), pH (hydrogen ion concentration) (Kannel et al., 2007; Mishra et al., 2021), salinity 

(Mishra et al., 2021), turbidity (Hossain et al., 2021), suspended solids (Kannel et al., 2007; Lim & Choi, 

2015; Mishra et al., 2021), chlorophyll-a (Lim & Choi, 2015), nitrogen (Lim & Choi, 2015; Mishra et al., 

2021), phosphorus (Lim & Choi, 2015; Mishra et al., 2021), and heavy metals (Poshtegal & Mirbagheri, 

2023). The ultimate purpose of monitoring WQIs is to identify changes in aquatic conditions and to provide 

data to decision makers that they can use to inform their environmental management and protection 

practices (AL-Fahdawi et al., 2015; Behmel et al., 2016; Ighalo & Adeniyi, 2020).  

In-situ observations involve collecting measurements of WQIs directly at a location of interest within 

an aquatic ecosystem. These observations provide a common approach to monitor WQIs across ecosystems 

(González et al., 2018; Lim & Choi, 2015). However, these observations are relatively expensive and time 

consuming, and are spatially and temporally limited (AL-Fahdawi et al., 2015; Peterson et al., 2020; Silva 

et al., 2022). Some areas are difficult to access for sampling purposes and/or have very limited resources. 

In addition, periodic WQ sampling stations might also miss the short-lived magnitudes, trends, and 

gradients in WQIs. Moreover, permanent field WQ stations are vulnerable to damage from extreme climate 

events. 

 Remote-sensing datasets (e.g., visible, thermal, radar) in the public domain provide a unique and 

cost-effective opportunity to monitor WQIs, especially in large and inaccessible aquatic ecosystems 

(Goddijn-Murphy et al., 2009; Lim & Choi, 2015; Pahlevan et al., 2022). These space-based observations 

offer a wealth of data with excellent spectral, spatial, and temporal resolutions that facilitate the calculation 

of WQIs. Landsat images, for example, have been extensively used to estimate optical and non-optical 

WQIs such as turbidity (Carpenter & Carpenter, 1983; González-Márquez et al., 2018; Peterson et al., 2020; 

Sharaf El Din, 2020), total nitrogen (TN) and total phosphorus (TP) (Lim & Choi, 2015; Peterson et al., 

2020; Sharaf El Din, 2020; Vakili & Amanollahi, 2020; Wei et al., 2022), chlorophyll-a (Markogianni et 

al., 2017; Peterson et al., 2020; Sudheer et al., 2006; Zhang et al., 2022), DO (Peterson et al., 2020), total 

suspended solids (TSS) (Sharaf El Din, 2020), salinity (Ansari & Akhoondzadeh, 2020; Bayati & Danesh-

Yazdi, 2021), and ammonium (Markogianni et al., 2018). Moderate Resolution Imaging Spectroradiometer 

images have been used to retrieve salinity (Hu et al., 2004; Wong et al., 2007), chlorophyll-a (Hu et al., 

2004; Huang et al., 2011; Kim et al., 2017; Liu et al., 2021), colored dissolved organic material (Hu et al., 

2004; Schaeffer et al., 2015; Yu et al., 2016), TSS (Kim et al., 2017; Mathew et al., 2017), TN (Arıman, 

2021; Mathew et al., 2017; Singh et al., 2013; Yu et al., 2016), and TP (Arıman, 2021; Mathew et al., 2017; 

Singh et al., 2013). Sentinel-2 images have been used to retrieve salinity (Bayati & Danesh-Yazdi, 2021; 

Hossen et al., 2022), chlorophyll-a (Hossen et al., 2022; Sent et al., 2021; Toming et al., 2016; Virdis et al., 

2022), TN (Guo et al., 2021; Hossen et al., 2022), TP (Guo et al., 2021; Hossen et al., 2022), colored 
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dissolved organic material (Sent et al., 2021; Toming et al., 2016; Virdis et al., 2022), turbidity (Sent et al., 

2021; Torres-Bejarano et al., 2021; Virdis et al., 2022), and electrical conductivity (EC) (Torres-Bejarano 

et al., 2021). Thermal infrared data has been used to retrieve water temperature (Ding & Elmore, 2015; 

Gorokhovich et al., 2022; Shi & Hu, 2021). Radar data were used to retrieve EC (Shareef, 2015; Shareef et 

al., 2016), salinity (Shareef, 2015; Shareef et al., 2016), and total dissolved salts (Shareef, 2015; Shareef et 

al., 2016). Previous efforts that used remote-sensing products to monitor WQIs over multiple ecosystems 

commonly used empirical models (Ansari & Akhoondzadeh, 2020; Carpenter & Carpenter, 1983; He et al., 

2021; Lim & Choi, 2015; Markogianni et al., 2018; Sharaf El Din, 2020). However, determining the 

appropriate model for extracting WQI in a specific area of interest, along with the factors to be considered 

while selecting such a model, presents a significant challenge. 

 With the rise of artificial intelligence techniques, modeling capabilities have made great advances 

(Trinh et al., 2017; Wei et al., 2020). Machine learning (ML) algorithms were used to analyze complex 

linear and nonlinear patterns between remote-sensing datasets and WQI data (Lim & Choi, 2015; Peterson 

et al., 2020; Sudheer et al., 2006; Zhang et al., 2022). Several studies used convoluting neural networks, 

artificial neural networks, and deep neural networks (DNNs) to retrieve salinity (Ansari & Akhoondzadeh, 

2020; Bayati & Danesh-Yazdi, 2021), TN (Jakovljević et al., 2018; Pu et al., 2019; Zhang et al., 2022), TP 

(Jakovljević et al., 2018; Pu et al., 2019; Zhang et al., 2022), chlorophyll-a (Peterson et al., 2020; Sudheer 

et al., 2006), DO (Jakovljević et al., 2018; Peterson et al., 2020), and turbidity (Bormudoi et al., 2022; 

Jakovljević et al., 2018). Other ML families, such as Extreme Gradient Boosting, Gradient Boosting 

Machine (GBM), Regression Tree, and Multi-Layer Perceptron have been implemented to retrieve EC 

(Krishnaraj & Honnasiddaiah, 2022), DO (Krishnaraj & Honnasiddaiah, 2022; Wagle et al., 2020), pH 

(Krishnaraj & Honnasiddaiah, 2022; Wagle et al., 2020), TN (Li et al., 2022), TP (Li et al., 2022; Wagle et 

al., 2020), chlorophyll-a (Wagle et al., 2020), and turbidity (Wagle et al., 2020). However, determining the 

most suitable ML model family for a specific area of interest remains challenging.  

Matagorda Bay, also called the Lavaca-Colorado estuary, is one of seven major estuarine systems 

located on the Texas coast (Figure 1; inset a). As the second largest estuary in Texas, Matagorda Bay is 

known for its vital role in supporting diverse ecosystems, serving as a critical habitat for marine life, and 

providing a foundation for commercial and recreational activities (Aguilar, 2017; Brody et al., 2004; Wilber 

& Bass, 1998). 

In this study, turbidity, chlorophyll-a, and salinity WQIs were retrieved from Landsat-8 images over 

Matagorda Bay during the period from 2014 to 2023. Because they exhibit complex spatiotemporal patterns 

and trends, these three WQIs have been established in several studies as significant markers of health of 

Matagorda Bay (Onabule et al., 2020; Ward & Armstrong, 1980). Along with water depth, current 

conditions, and temperature, several studies have found these WQIs to be the most significant in controlling 
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the growth of oysters in Matagorda Bay (Aguilar, 2017; Kinsey & Montagna, 2005; Marshall et al., 2019; 

Wilber & Bass, 1998). Both empirical and ML models were used. Specific questions to be addressed in this 

study include: (1) Which empirical model(s) could perform well in extracting chlorophyll-a, salinity, and 

turbidity over Matagorda Bay? (2) Which model(s) witness a significant performance enhancement once 

recalibrated over Matagorda Bay? (3) Do ML models usually outperform empirical models in extracting 

WQIs? (4) Which ML model family performs well in extracting salinity and turbidity over Matagorda Bay? 

A total of 36 empirical models, documented in previous research, were applied to retrieve turbidity, 

chlorophyll-a, and salinity over Matagorda Bay, Texas (Figure 1). Specifically, 12 models were employed 

for chlorophyll-a, 2 models for salinity, and 22 models for turbidity estimation. In addition, four distinct 

ML algorithm families—DNN, GBM, Distributed Random Forest (DRF), and Generalized Linear Model 

(GLM)—were employed to retrieve salinity and turbidity over Matagorda Bay.  

Figure 1: Spatial distribution of Matagorda Bay along the Texas Gulf Coast, and locations of the in-situ 
WQIs measurements used in this study. (a) Location of the study area along the Texas coast. (b) Yearly 
distribution of in-situ WQIs measurements during the study period (2014–2023). 
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1.3. Data 

1.3.1. Study Area 

Matagorda Bay (area: 1,070 km2) is comprised of a primary bay (Matagorda Bay) and several 

subsystems, including Lavaca Bay, Tres Palacios Bay, and East Matagorda Bay (Figure 1) (Brody et al., 

2004; McBride, 2022; Ward & Armstrong, 1980). Matagorda Bay holds diverse ecological significance as 

an estuarine ecosystem, nurturing a wide range of flora and fauna and functioning as a habitat and breeding 

ground for various fish, shellfish, and aquatic organisms that enhance local biodiversity and support 

fisheries (Caillier, 2023; Olsen, 2019; Renaud & Williams, 2023; Wetzel & Armstrong, 1987). This 

ecological richness translates into substantial economic value, driven by thriving fisheries, recreational 

pursuits, and the potential for shipping and transportation. Both commercial and recreational fishing bolster 

the local economy, and the bay attracts tourists for activities like boating, birdwatching, and outdoor 

exploration (Brody et al., 2004; Haby, 2012; Ropicki et al., 2016).  

 Oysters are commercially harvested in Matagorda Bay (Culbertson, 2008). They also play a crucial 

role in maintaining WQ, supporting local fisheries, and enhancing the overall ecological resilience of 

Matagorda Bay (Kim & Montagna, 2009; Kinsey & Montagna, 2005). Studies have highlighted the oyster 

reefs in Matagorda Bay as important nurseries for various commercially valuable species, such as spotted 

seatrout and red drum (Grabowski et al., 2012). The threats these oyster populations face include habitat 

degradation, reduced water flow, and disease, which are directly related to the WQ in Matagorda Bay 

(Aguilar, 2017; Kinsey & Montagna, 2005). Monitoring WQIs is significant for developing effective 

conservation measures that are crucial to preserving the ecological and economic benefits that oysters in 

Matagorda Bay provide. 

 Matagorda Bay's ecosystem is significantly shaped by its connectivity to neighboring water bodies, 

primarily the Gulf of Mexico for the main bay and river connections for the secondary bays (Kim & 

Montagna, 2009). The estuary is fed by four major rivers: the Colorado River, the Lavaca River, the 

Carancahua River, and the Tres Palacios River (Aguilar, 2017; Palmer et al., 2011). The Colorado River is 

the primary source of freshwater, supplying an estimated 34% of total freshwater inflow for bay system 

(Kim & Montagna, 2009; Kucera et al., 2002; McBride, 2022; Montagna, 1994; Wetzel & Armstrong, 

1987). Freshwater input plays a pivotal role in determining the overall health of Matagorda Bay (Aguilar, 

2017; Kim & Montagna, 2009; Palmer et al., 2011; Wetzel & Armstrong, 1987; Wilber & Bass, 1998); it 

supplies nutrients to the bay (McBride, 2022; Wilber & Bass, 1998), regulates salinity (Aguilar, 2017; Kim 

& Montagna, 2009; McBride, 2022; Montagna, 1994; Wilber & Bass, 1998), and is responsible for the 

transportation of sediment (Kim & Montagna, 2009; Wilber & Bass, 1998). 
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Table 1: Statistics for in-situ WQIs (salinity, turbidity, and chlorophyll-a) collected over Matagorda Bay, 
at locations shown in Figure 1, from 2014 to 2023. Statistical measurements include maximum (Max.), 
minimum (Min.), and average and standard deviation (Avg. ± Std. Dev.). 

WQI Units No. of 
Samples Max. Min.  Avg. ± Std. Dev.  

Salinity psu 478 35.91 0.10 17.37 ± 8.22 
Turbidity NTU 173 91.00 2.00 25.18 ± 18.60 

Chlorophyll-a μg/L 17 25.50 0.04 5.11 ± 7.55 
 

1.3.2. In-Situ Data 

We gathered in-situ measurements over Matagorda Bay for the period from 2014 to 2023 (Inset b; 

Figure 1). This data was collected from the public databases of the Texas Commission on Environmental 

Quality (TCEQ) (TCEQ, 2023), Lower Colorado River Association (LCRA) (LCRA, 2023), and Texas 

Wildlife Parks Department (TWPD). TCEQ sampling procedures have been adopted by both LCRA and 

TWPD (LCRA, 2022, 2023). For sampling within estuaries, water samples are obtained at a depth of 0.30 

m. Salinity was measured using a multiprobe instrument and recorded to the nearest 0.10 psu (practical 

salinity unit) (TCEQ, 2012). Turbidity is measured using the benchtop turbidity meter instrument and 

reported to the nearest 0.02 NTU (nephelometric turbidity unit) (TCEQ, 2012; Texas Secretary of State, 

2023). Chlorophyll-a concentrations were measured on collected water samples (TCEQ, 2012) using a 

spectrophotometer and recorded in μg/L (Dunne, 1999).  

 The locations of in-situ measurements are shown in Figure 1. A total of 17 measurements were 

collected for chlorophyll-a, 478 for salinity, and 173 for turbidity. These are the only measurements that 

align in time with the dates of Landsat-8 acquisition during the investigated period (2014–2023). Table 1 

provides statistics for these measurements. Table 1 indicates that over Matagorda Bay, chlorophyll-a 

concentrations ranged from 0.04 μg/L in August 2023 to 25.50 μg/L in September 2019. Salinity ranged 

from 0.10 psu in May 2021 to 35.91 psu in October 2022. Turbidity ranged from 2.0 NTU in November 

2017 to 91.0 NTU in July 2020. The average (± standard deviation) is estimated at 17.37 ± 8.22 psu, 25.18 

± 18.60 NTU, and 5.11 ± 7.55 μg/L, for salinity, turbidity, and chlorophyll-a, respectively. 

1.3.3. Remote-Sensing Data 

In this study, we used Landsat-8 (Collection 2, Level 2, Tier 1) images from 2014 to 2023 over 

Matagorda Bay. These images cover path 26 and row 40 of the Landsat worldwide reference system. 

Landsat-8 launched on February 11, 2013, as a joint mission between U.S. Geological Survey and the 

National Aeronautics and Space Administration (Danbara, 2014; Lim & Choi, 2015). Landsat-8 carries two 

instruments, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIR). These instruments 
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record data over 11 spectral bands. OLI records apparent radiance in 9 optical bands in wavelengths ranging 

from optical to shortwave infrared at a spatial resolution of 30 m. The TIR instrument records in thermal 

infrared wavelengths at a 120-m spatial resolution. Landsat-8 has 16-day temporal resolution and a 185-km 

swath width. A total of five Landsat-8 images were used to retrieve chlorophyll-a. Salinity used 121 images, 

while turbidity used 43 images. 

1.4. Methods 

1.4.1. Surface Reflectance  

Surface reflectance data were extracted from Landsat-8 images in a Google Earth Engine (GEE) 

environment. In the GEE editor, the scale factor was applied to Landsat-8’s band 1 through band 7 (B1–

B7) to generate surface reflectance data. These surface reflectance data were corrected for the temporally, 

spatially, and spectrally varying scattering and absorbing effects of atmospheric gases, aerosols, and water 

vapor (Danbara, 2014; Lim & Choi, 2015). For modelling purposes, surface reflectance data were extracted 

over locations of in-situ observations (Figure 1) and times where in-situ observations align with the dates 

of Landsat-8 acquisition during the investigated period (2014–2023). Due to the inherently low surface 

reflectance of water, some pixels showed negative surface reflectance values (Kuhn et al., 2019; Mondejar 

& Tongco, 2019). These pixels were deleted and not considered for further analyses. Surface reflectance 

values for pixels in cloud-contaminated areas were also removed. Figure 2 displays scatterplots depicting 

the relationship between surface reflectance data across each band (B1–B7) and the WQIs.  The correlation 

coefficient between chlorophyll-a and surface reflectance, from all bands, was estimated to be 0.89 ± 0.07 

(average ± standard deviation). B6 and B7 exhibit the highest positive correlation (0.96 and 0.98, 

respectively), with chlorophyll-a while B1 and B2 demonstrate the lowest positive correlations (0.80 and 

0.81, respectively). The correlation coefficient between salinity and surface reflectance is weak. It estimated 

at -0.11 ± 0.04. B4 and B5 show the maximum negative correlation of -0.16, whereas B7 shows the 

minimum negative correlation (-0.05). The correlation coefficient between turbidity and surface reflectance 

is estimated to be 0.05 ± 0.04. B4 exhibits the highest correlation of 0.12, whereas B7 demonstrates the 

lowest correlation of -0.02. 
 Table 2 presents statistics for surface reflectance data generated from B1 through B7 during the 

periods when in-situ observations correspond with Landsat-8 acquisition dates. The surface reflectance data 

used for salinity retrieval displayed mean values ranging from 0.04 to 0.11, with corresponding standard 

deviations ranging from 0.03 to 0.07. For turbidity, the surface reflectance data revealed average values 

spanning from 0.06 to 0.12, accompanied by standard deviations ranging from 0.04 to 0.09. The surface 

reflectance data used for chlorophyll-a retrieval demonstrated average and standard deviation values 

ranging from 0.07 to 0.15 and 0.09 to 0.16, respectively. 
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Figure 2: Scatterplots of turbidity (top panel), salinity (middle panel), and chlorophyll-a (bottom panel) 
and Landsat-8 derived surface reflectance data at each band (B1 – B7).   

1.4.2. Empirical Models  

A total of 36 empirical models, documented in previous studies, were applied to Landsat-8 surface 

reflectance data to extract WQIs data for Matagorda Bay. We reported all empirical models that were 

published and used to retrieve WQIs from Landsat-8 data. These models along with their geographic origins 

and sources are presented in Table 3. Salinity retrieval used 2 models (Sn1 and Sn2), turbidity retrieval 

involved 22 models (T1–T22), and chlorophyll-a estimation used 12 models (C1–C12) (Table 3). The 

empirical models for chlorophyll-a used B1, B2, B3, B4, B5, B6, and B7. Salinity made use of B1, B2, B3, 

and B4, while turbidity models employed B1, B2, B3, B4, and B5. These models were initially used with 

their original weights (Table 3), i.e., uncalibrated models. Additionally, we performed recalibration 

specifically tailored to Matagorda Bay, resulting in the generation of new weights for each of these models 

(i.e., calibrated models). Empirical models over Matagorda Bay were calibrated using the ordinary least 

squares package in a geographic information system environment (Cabral et al., 2011; Peprah & Mensah, 

2017) .   
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Table 2: Statistics for surface reflectance data extracted at in-situ locations. Statistical measurements 
include minimum (Min.), maximum (Max.), and average and standard deviation (Avg. ± Std. Dev). 

WQI Salinity (478) Turbidity (173) Chlorophyll-a (17) 

B1 
Min. 0.00 0.00 0.02 
Max. 0.20 0.24 0.52 

Avg. ± Std. Dev 0.05 ± 0.03 0.06 ± 0.04 0.10 ± 0.14 

B2 
Min. 0.01 0.01 0.04 
Max. 0.23 0.24 0.52 

Avg. ± Std. Dev 0.07 ± 0.03 0.08 ± 0.04 0.12 ± 0.13 

B3 
Min. 0.02 0.04 0.06 
Max. 0.27 0.35 0.49 
Mean 0.11 ± 0.04 0.12 ± 0.05 0.15 ± 0.13 

B4 
Min. 0.01 0.03 0.04 
Max. 0.28 0.32 0.49 

Avg. ± Std. Dev 0.11 ± 0.05 0.11 ± 0.06 0.14 ± 0.13 

B5 

Min. 0.00 0.00 0.00 
Max. 0.44 0.42 0.52 

Avg. ± Std. Dev 0.08 0.12 0.12 
St. Dev. 0.07 0.09 0.16 

B6 

Min. 0.00 0.00 0.00 
Max. 0.40 0.40 0.39 

Avg. ± Std. Dev 0.06 ± 0.06 0.10 ± 0.09 0.10 ± 0.12 
St. Dev. 0.06 0.09 0.12 

B7 
Min. 0.00 0.00 0.00 
Max. 0.31 0.32 0.31 

Avg. ± Std. Dev 0.04 ± 0.04 0.07 ± 0.07 0.07 ± 0.09 
 

 
Table 3: Empirical models coefficients published in previous studies along with the locations they were 
applied to and their respective sources. Models over Matagorda Bay were calibrated. 

WQI Model 
ID Equation Location Source 

C
hl

or
op

hy
ll-

a 

C1 −0.025 + (3ܤ)1.029 +  & Krishnagiri Reservoir, India (Elangovan (5ܤ)0.643
Murali, 2020) 1.03 –  20.11(B3) +  59.62(B5) Matagorda Bay — 

C2 

0.2 − −(3ܤ)1.504 −(1ܤ)1.321 +(7ܤ)2.567 (6ܤ)0.06 +  & Krishnagiri Reservoir, India (Elangovan (5ܤ)4.668
Murali, 2020) 0.70 – –(1ܤ)18.98  –(5ܤ)84.92 + (3ܤ)16.66  (6ܤ)173.05  +  — Matagorda Bay (7ܤ)215.55 

C3 0.011 + (6ܤ)1.091 +  & Krishnagiri Reservoir, India (Elangovan (7ܤ)0.133
Murali, 2020) −0.57 – + (6ܤ)26.82   — Matagorda Bay (7ܤ)114.46 

C4 0.010− (1ܤ)0.468 +  & Krishnagiri Reservoir, India (Elangovan (5ܤ)1.525
Murali, 2020) 0.14 – + (1ܤ)45.55   — Matagorda Bay (5ܤ)81.13 

C5 −0.004 + −(3ܤ)0.977  & Krishnagiri Reservoir, India (Elangovan (1ܤ)0.02
Murali, 2020) −8.88 – + (1ܤ)106.68   — Matagorda Bay (3ܤ)163.85

C6 
14027.14݁ିଷ.ଷ଺[(஻ଵା஻ସ) ஻ଷ])⁄  Barataria Basin, Mississippi (Vargas-Lopez et 

al., 2021) −7.84 – (1ܤ)117.05  + – (3ܤ)76.32   — Matagorda Bay (4ܤ)96.43 

C7 −38.621 + 2ܤ]92.050 1ܤ) + 2ܤ + ⁄(3ܤ ] Trichonis Lake, Greece (Markogianni et al., 
2018) 
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1ܤ)]2239.647+ + (2ܤ 2⁄ ] −6.27 + –(1ܤ)243.63   — Matagorda Bay (3ܤ)209.61 + (2ܤ)395.91 

C8 2.41൫4ܤ 3ൗܤ ൯+ 0.187 Java Sea, Cirebon (Buditama et al., 
2017) −5.30 + – (3ܤ)196.76   — Matagorda Bay  (4ܤ)141.61 

C9 65.7−  Lake Chivero, Zimbabwe (Masocha, Dube, et (4ܤ)4932.7
al., 2018) −2.02 +  — Matagorda Bay (4ܤ)50.86 

C10 −26.50 + 67.4ቀ5ܤ 4ൗܤ ቁ Lake Chivero, Zimbabwe (Masocha, Dube, et 
al., 2018) 1.78 – + (4ܤ)45.48   — Matagorda Bay (5ܤ)80.70 

C11 7.7555 log൫3ܤ 1ൗܤ ൯+ 1.1738 Jordan Lake, North Carolina (Yang & Anderson, 
2016) −8.88 – + (1ܤ)106.68   — Matagorda Bay (3ܤ)163.85

C12 0.7354݈݃݋ቀ5ܤ 3ൗܤ ቁ + 1.5972 Jordan Lake, North Carolina (Yang & Anderson, 
2016) 1.03 – + (3ܤ)20.11   — Matagorda Bay (5ܤ)59.62 

Sa
lin

ity
 

Sn1 

ଶ(4ܤ)71820− + (4ܤ)1334.6 + (3ܤ)ଶ −235.67(3ܤ)4564.5 − ଶ(2ܤ)24340 + ଶ(1ܤ)32232+ (2ܤ)1187.3 − (1ܤ)1333.5 + 39.97 
Arabian Gulf (Zhao & Temimi, 

2016) 16.85 + (1ܤ)73.85  − −(3ܤ)164.33 + (2ܤ)110.32   — Matagorda Bay (4ܤ)127.86 

Sn2 

39.664 − (1ܤ)1233.1 + (3ܤ)189.58− (2ܤ)1067.5 + (4ܤ)1640.8 + ଶ(2ܤ)ଶ −17844(1ܤ)23823 + ଶ(3ܤ)1944.7 − + ଶ Arabian Gulf (Zhao et al., 2017) 16.85(4ܤ)94613 (1ܤ)73.85  − −(3ܤ)164.33 + (2ܤ)110.32   — Matagorda Bay (4ܤ)127.86 

Tu
rb

id
ity

 

T1 289.1 1ߨ4ܤ −  Damariscotta River and Harpswell (16.86/(ߨ4ܤ))
Sound Bay, Maine (Snyder et al., 2017) 20.73 +   Matagorda Bay (4ܤ)39.71 

T2 380.32(4ܤ)− 1.7826 Cam Ranh Bay (CRB) and Thuy 
Trieu Lagoon (TTL), Vietnam (Quang et al., 2017) 20.73 +  — Matagorda Bay (4ܤ)39.71 

T3 −8.1043ቀ5ܤ 4ൗܤ ቁ + 7.2697 CRB and TTL, Vietnam (Quang et al., 2017) 20.77 + – (4ܤ)45.11   — Matagorda Bay (5ܤ)5.52 

T4 297.86(3ܤ)− 2.8208 CRB and TTL, Vietnam (Quang et al., 2017) 22.41 +  — Matagorda Bay (3ܤ)23.87 

T5 604.54(5ܤ)− 2.2241 CRB and TTL, Vietnam (Quang et al., 2017) 23.80 +  — Matagorda Bay (5ܤ)11.63 

T6 424.54(2ܤ)− 4.4504 CRB and TTL, Vietnam (Quang et al., 2017) 23.58 +  — Matagorda Bay (2ܤ)20.23 

T7 504.31(1ܤ)− 7.1769  CRB and TTL, Vietnam (Quang et al., 2017) 24.56 +  — Matagorda Bay (1ܤ)9.53 

T8 12.895ቀ5ܤ 1ൗܤ ቁ − 3.158  CRB and TTL, Vietnam (Quang et al., 2017) 24.04 – + (1ܤ)7.40   — Matagorda Bay (5ܤ)13.64 

T9 6.3388൫4ܤ 3ൗܤ ൯ − 2.4028  CRB and TTL, Vietnam (Quang et al., 2017) 25.99 – + (3ܤ)342.64   — Matagorda Bay (4ܤ)347.67 

T10 5.5354ቀ5ܤ 2ൗܤ ቁ − 1.0947  CRB and TTL, Vietnam (Quang et al., 2017) 23.37 – + (2ܤ)9.22   — Matagorda Bay (5ܤ)9.12 

T11 3.5623ቀ5ܤ 3ൗܤ ቁ + 2.8059  CRB and TTL, Vietnam (Quang et al., 2017) 22.38 – + (3ܤ)18.28   — Matagorda Bay (5ܤ)5.70 

T12 

4.21 - 74.26(B2) – 14.84(B3) + 267.24(B4) – 
126.89(B5)  

Tsegn-Wen and Nan-Haw Reservoir, 
Taiwan (Liu & Wang, 2019) 24.16 – –(2ܤ)210.41  – (4ܤ)430.58 + (3ܤ)250.12   — Matagorda Bay (5ܤ)13.66 

T13 −590 + 1445.9൫4ܤ 2ൗܤ ൯  Lake Chivero, Zimbabwe (Masocha, Dube, et 
al., 2018) 19.95 – + (2ܤ)311.32    Matagorda Bay (4ܤ)265.60 

T14 −51.1 + 137.5൫4ܤ 2ൗܤ ൯  Lake Chivero, Zimbabwe (Masocha, Dube, et 
al., 2018) 19.95 – + (2ܤ)311.32   — Matagorda Bay (4ܤ)265.60 

T15 -1.1+5.8൫2ܤ 4ൗܤ ൯ Ramganga River, India (Allam et al., 2020) 19.95 – + (2ܤ)311.32    Matagorda Bay (4ܤ)265.60 
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T16 3.896− 4.186൫2ܤ 3ൗܤ ൯  Ramganga River, India (Allam et al., 2020) 21.20 – + (2ܤ)92.09   — Matagorda Bay (3ܤ)96.75 

T17 −138.2− 1718൫4ܤ 3ൗܤ ൯+ 695.1݁൫஻ସ ஻ଷൗ ൯  Mississippi River, Mississippi (Pereira et al., 2017) 25.99 – + (3ܤ)342.64   — Matagorda Bay (4ܤ)347.67 

T18 20.981൫3ܤ 2ൗܤ ൯ − 8.901  Tseng-Wen reservoir, Taiwan (Liu & Wang, 2019) 21.20 – + (2ܤ)92.09   — Matagorda Bay (3ܤ)96.75 

T19 102.56(3ܤ + (4ܤ − 5.5003  Tseng-Wen reservoir, Taiwan (Liu & Wang, 2019) 25.99 – + (3ܤ)342.64   — Matagorda Bay (4ܤ)347.67 

T20 
2ܤ)90.319 + 3ܤ + (4ܤ − 10.775  Tseng-Wen reservoir, Taiwan (Liu & Wang, 2019) 23.79 – –(2ܤ)214.67   — Matagorda Bay (4ܤ)405.99 + (3ܤ)234.23 

T21 20.254݈݊(2ܤ + (3ܤ + 46.009  Tseng-Wen reservoir, Taiwan (Liu & Wang, 2019) 21.20 – + (2ܤ)92.09   — Matagorda Bay (3ܤ)96.75 

T22 
14.735 ln(2ܤ + 3ܤ + (4ܤ + 30.802  Tseng-Wen reservoir, Taiwan (Liu & Wang, 2019) 23.79 – –(2ܤ)214.67   — Matagorda Bay (4ܤ)405.99 + (3ܤ)234.23 

 

1.5. Machine Learning (ML) Models  

1.5.1.  ML Model Families 

In this study, the open-source H2O-AML (automated ML) platform was employed (accessible at: 

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html). H2O-AML provides user-friendly, fully 

automated supervised learning algorithms, catering to both those well-versed in the field and those without 

expertise (Truong et al., 2019). Within the realm of H2O-AML, various ML families are used in this study, 

including DNN, DRF, GBM, and GLM. 

 DNN is a feedforward network that uses multiple hidden layers composed of neurons to analyze 

complex relationships between inputs and target features (Kamilaris & Prenafeta-Boldú, 2018; Mathew et 

al., 2021; Oyebisi & Alomayri, 2023; Tang et al., 2020). DRF combines multiple weak decision trees to 

produce a strong ensemble forest (Asgari et al., 2022; Shrivastav & Kumar, 2022). The GBM family 

generates an ensemble model using parallel regression trees (Natekin & Knoll, 2013; Shrivastav & Kumar, 

2022). The GLM algorithm produces regression models using exponential distributions (Osawa et al., 2011; 

Pekár & Brabec, 2018). Comprehensive descriptions regarding structures and hyperparameters for H2O-

AML families can be found on the H2O-AML website (https://docs.h2o.ai/h2o/latest-stable/h2o-

docs/automl.html). 

 

1.5.2.  ML Model Setup and Structure 

For both turbidity and salinity, the input data for the ML models were comprised of seven Landsat-8 

bands (Figure 3). The organization of the input data aimed to facilitate a more straightforward comparison 

between ML and empirical models. Due to limited data availability, ML models were not created for 

chlorophyll-a. 
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 To guarantee equal consideration of all input variables, the following equation was employed to 

normalize model inputs within the range of 0 to 1 (Figure 3): 

௡௢௥௠ݔ  = ௫ି௫೘೔೙௫೘ೌೣି௫೘೔೙, (1) 

where ݔ௡௢௥௠ represents the normalized value for a specific input x, while ݔ௠௔௫ and ݔ௠௜௡ represent the 

maximum and minimum recorded values of x, respectively. 

 

 For each model family (DNN, DRF, GBM, GLM), the input and target data were divided into 

training (64%), validation (16%), and testing (20%) sets (Figure 3). The process of dividing the input/target 

data followed a random format. This method of generating random data ensures unique input values for 

each model run.  

 

 

 

 

 

 

 

 

 

Figure 3: Input and target variables and structures of the ML families used to retrieve salinity and 
turbidity over Matagorda Bay. 

 

To prevent overfitting in each model, early stopping criteria were enforced, employing the mean-

squared error as the stopping metric. This involved setting a stopping round value of 5 and a stopping 

tolerance of 0.0001. This option specifies the tolerance value by which a ML model must improve before 

training cease. In this case, the moving average for last 6 simulation rounds is calculated, where the first 



20 
 

moving average is reference value for other 5 moving averages to compare. The model will stop training if 

the ratio between the best moving average and reference moving average is more or equal 0.0001. These 

stopping options are used to increase model performance by restricting the number of models that get built. 

To improve the simulation accuracy, we ran each simulation for 50 runs. The model with the highest testing 

performance, based on the Nash-Sutcliffe Efficiency (NSE) coefficient, was selected as an optimal model. 

An optimal model was selected for salinity and for turbidity from each ML model family (e.g., DNN, DRF, 

GBM, GLM) (Figure 3). 

 

1.5.3.  Model Performance Measures  

Performance for both empirical and ML models was assessed using the NSE coefficient, correlation 

coefficient (r), and normalized root mean square error (NRMSE). These measures were used to evaluate 

the performance of similar models worldwide (Elangovan & Murali, 2020; González-Márquez et al., 2018; 

Liu & Wang, 2019; Masocha, Mungenge, et al., 2018). The standard variation in the 50 ML model 

simulations was used to quantify errors in each performance metric. 

The NSE measures the relative magnitude of residual variance to the variance of observed data. NSE 

values range from -∞ to 1, with optimal performance at 1: 

ܧܵܰ  = 1 − ∑ (௑೛ೝ೐೏.ି௑೚್ೞ.)మ೙೔సభ(௑೚್ೞ.ି௑ೀ್ೞ.෣ )మ . (2) 

The r value measures the strength of linear relationship between predicted and observed data with 

value ranges between -1 and 1. An r value of 0 means there is no correlation, and positive (negative) values 

mean positive (negative) correlation, with 1 (-1) indicating perfect positive (negative) correlations between 

predicted and observed values:  

 

The NRMSE is the RMSE normalized by standard deviation of the observed data with value ranges 

from 0 to ∞, given by this equation: 

 

ݎ =  ∑ ቀ௑೛ೝ೐೏.ି௑೛ೝ೐೏.෣ ቁ(௑೚್ೞ.ି௑೚್ೞ.෣ )೙೔సభ      ට∑ ቀ௑೛ೝ೐೏.ି௑೛ೝ೐೏.෣ ቁమஊቀ௑೚್ೞ.ି௑೚್ೞ.෣ቁమ೙೔సభ . (3) 

ܧܵܯܴܰ = ଵఙ ට∑ (௑೛ೝ೐೏.ି௑೚್ೞ.)మ೙೔సభ ௡ , (4) 
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where ܺ௣௥௘ௗ. and ܺ ௢௕௦. represent predicted value and observed (e.g., in-situ) value, respectively, and ܺ ௣௥௘ௗ.෣  

and ܺ ௢௕௦.෣  are mean values; n represents the input data size; and σ is the standard deviation of observed data. 

 

1.6. Results 

1.6.1. Empirical Models 

Figure 4 and Table 4 present performance metrics of the 36 uncalibrated and calibrated empirical 

models implemented in this study. Performance varied in the 12 uncalibrated empirical chlorophyll-a 

models (Figure 4a; Table 4), with NRMSE ranging from 0.32 to 1475.10, r from -0.88 to 0.96, and NSE 

from -23527276.57 to -0.12. Among these uncalibrated models, model C8 had the highest performance, 

based on NSE values, (NRMSE: 0.32, r: 0.65, NSE: -0.12); model C7 displayed the lowest performance 

(NRMSE: 1475.10, r: 0.80, NSE: -23527276.57) (Figure 4a; Table 4). Statistical assessments of the 

uncalibrated chlorophyll-a models indicate poor performance (NRMSE: 126.91 ± 424.70, r: 0.42 ± 0.67, 

NSE: -1961890 ± 6791336). After calibration over Matagorda Bay, the chlorophyll-a models demonstrated 

enhanced performance (NRMSE: 0.91 ± 0.03, r: 0.94 ± 0.04, NSE: 0.89 ± 0.06). These calibrated models 

also demonstrated comparable performance when compared to one another (Figure 4a; Table 4). The 

NRMSE for the calibrated models ranged from 0.85 to 0.96, with corresponding r values from 0.88 to 0.99, 

and NSE values from 0.88 to 0.98. Notably, calibrated model C2 exhibited the highest performance (optimal 

model) with NRMSE, r, and NSE values of 0.96, 0.99, and 0.98, respectively. The scatterplot of the 

calibrated model C2 demonstrates an overall acceptable performance (Figure 5a). Calibrated model C9 

displayed the lowest performance, with NRMSE, r, and NSE values of 0.85, 0.88, and 0.77, respectively. 

 The performance of the uncalibrated empirical salinity models varied across the matrices, with 

NRMSE ranging from 180.47 to 180.48, r from -0.16 to 0.16, and NSE from -32638.62 to -32635.55 (Figure 

4b; Table 4). Notably, neither of the uncalibrated empirical salinity models produced statistically significant 

performance (NRMSE: 180.47 ± 0.01, r: 0.16 ± 0.22, NSE: -32635 ± 2.18). The calibrated empirical salinity 

model exhibited a slight improvement with NRMSE, r, and NSE values of 0.24, 0.24, and 0.06, respectively 

(Figure 4b; Table 4). However, the scatterplot for the calibrated salinity model indicates poor performance 

(Figure 5b). It is important to note that since the same bands (B1–B4) were used to generate the uncalibrated 

salinity models, only one calibrated model was generated for salinity. 
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Figure 4: Performance statistics for (a) chlorophyll-a, (b) salinity, and (c) turbidity uncalibrated (solid 
colors) and calibrated (dashed lines) empirical models. Note the y-axis is fitted to ±1 for display purposes; 
actual higher and lower values are listed in Table 4.

Table 4: Performance metrics for 36 uncalibrated and calibrated empirical models (equations showed in 
Table 3) applied over Matagorda Bay.

WQI Model ID

Uncalibrated Models Calibrated Models

NRMSE r NSE NRMSE r NSE

C
hl

or
op

hy
ll-

a C1 0.36 0.90 -0.39 0.89 0.92 0.84
C2 0.36 0.75 -0.41 0.96 0.99 0.98
C3 0.36 0.96 -0.43 0.95 0.98 0.96
C4 0.36 0.93 -0.42 0.92 0.94 0.89
C5 0.36 0.89 -0.43 0.93 0.96 0.92
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C6 7.00 -0.48 -528.50 0.93 0.96 0.92 
C7 1475.10 0.80 -23527276.57 0.94 0.97 0.94 
C8 0.32 0.65 -0.12 0.87 0.89 0.80 
C9 37.08 -0.88 -14866.34 0.85 0.88 0.77 
C10 0.97 0.68 -9.18 0.89 0.92 0.85 
C11 0.34 -0.60 -0.22 0.93 0.96 0.92 
C12 0.34 0.41 -0.23 0.89 0.92 0.84 

Salinity 
Sn1 180.48 -0.16 -32638.62 0.24 0.24 0.06 
Sn2 180.47 0.16 -32635.55 0.24 0.24 0.06 

Tu
rb

id
ity

 

T1 5.18 0.12 -26.00 0.12 0.12 0.01 
T2 1.65 0.12 -1.75 0.12 0.12 0.01 
T3 0.99 0.12 0.01 0.12 0.12 0.01 
T4 1.30 0.07 -0.70 0.07 0.07 0.00 
T5 3.85 0.06 -13.90 0.06 0.06 0.00 
T6 1.37 0.05 -0.90 0.05 0.05 0.00 
T7 1.50 0.02 -1.25 0.02 0.02 0.00 
T8 4.12 0.01 -16.05 0.06 0.06 0.00 
T9 1.53 0.19 -1.34 0.25 0.25 0.06 

T10 1.41 0.10 -1.01 0.06 0.06 0.00 
T11 1.41 0.06 -1.01 0.07 0.07 0.00 
T12 1.31 0.09 -0.72 0.29 0.29 0.08 
T13 85.15 0.13 -7292.28 0.25 0.25 0.06 
T14 7.22 0.13 -51.39 0.25 0.25 0.06 
T15 1.56 -0.19 -1.45 0.25 0.25 0.06 
T16 1.63 0.03 -1.68 0.09 0.09 0.01 
T17 1.74 0.16 -2.06 0.25 0.25 0.06 
T18 1.09 -0.01 -0.18 0.09 0.09 0.01 
T19 1.18 0.09 -0.39 0.25 0.25 0.06 
T20 1.26 0.08 -0.60 0.28 0.07 0.08 
T21 1.32 0.09 -0.77 0.09 0.09 0.01 
T22 1.25 0.11 -0.58 0.28 0.07 0.08 
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The performance of uncalibrated turbidity models varied with NRMSE values ranging from 0.99 

to 85.15, r from -0.19 to 0.19, and NSE from -7292.28 to 0.01 (Figure 4c; Table 4). Among the 22 models, 

uncalibrated model T3 demonstrated the highest performance (NRMSE: 0.99, r: 0.12, NSE: 0.01), while 

uncalibrated model T13 had the least favorable performance (NRMSE: 85.15, r: -0.13, NSE: -7292.28) 

(Figure 4c; Table 4). None of the uncalibrated empirical turbidity models yield significant performance 

metrics (NRMSE: 5.86 ± 17.78, r: 0.07 ± 0.08, NSE: -337.09 ± 1553.51). The calibrated empirical turbidity 

models displayed a relatively improved performance (NRMSE: 0.15 ± 0.10, r: 0.13 ± 0.09, NSE: 0.03 ± 

0.03). The calibrated models showed NRMSE values ranging from 0.02 to 0.29, r values from 0.00 to 0.29, 

and NSE values from 0.02 to 0.08 (Figure 4c; Table 4). Among the models, calibrated model T12 showed 

the highest performance with NRMSE, r, and NSE values of 0.29, 0.29, and 0.08, respectively. However, 

the scatterplot depicting the calibrated turbidity model T12 shows inadequate performance (Figure 5c). 

Calibrated model T7 exhibited the lowest performance, with NRMSE, r, and NSE values of 0.02, 0.02, and 

0.00, respectively.

Figure 5: Observed and modeled (a) chlorophyll-a, (b) salinity, and (c) turbidity values generated form 

the calibrated empirical models over Matagorda Bay. Red lines indicate a 1:1 relationship. 
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1.6.2. ML Models

Figure 6 and Table 5 present the statistical measures for the optimal salinity models (selected based 

on testing NSE value) generated from various ML families during training and testing phases. Among the 

diverse ML families, a trend of closely competitive performance emerges. However, DNN stands out as the 

most effective family for salinity simulations. The optimal DNN achieved a training performance of 

NRMSE: 0.90 ± 0.08, r: 0.45 ± 0.10, NSE: 0.19 ± 0.13, and a testing performance of NRMSE: 0.87 ± 0.06, 

r: 0.49 ± 0.09, NSE: 0.23 ± 0.12. The most significant input variables for this model were B3, B4, B6, B7, 

and B1. The relative importance for these inputs were 22%, 15%, 14%, 13%, and 13%, respectively. 

Figure 6: Performance metrics for optimal salinity models derived from different ML model families (e.g., 

DNN, DRF, GBM, GLM). Metrics are displayed for the (a) training and (b) testing phases. 
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Table 5: Performance metrics for the optimal ML model generated for salinity and turbidity during 
training and testing phases. 

 

 

Following DNN closely in performance, GBM ranks as the second-best performing family. The 

optimal GBM model, showcased training performance metrics of NRMSE: 0.86 ± 0.04, r: 0.57 ± 0.07, 

NSE: 0.25 ± 0.07, and testing performance metrics of NRMSE: 0.92 ± 0.03, r: 0.46 ± 0.10, NSE: 0.15 ± 

0.07. DRF presents a slightly weaker performance, being the second-least effective family. The optimal 

DRF model exhibited a training performance of NRMSE: 0.40 ± 0.01, r: 0.96 ± 0.00, NSE: 0.84 ± 0.01, 

and a testing performance of NRMSE: 0.93 ± 0.04, r: 0.37 ± 0.08, NSE: 0.13 ± 0.08. Finally, GLM ranks 

as the least proficient model. The optimal GLM model resulted in a training performance of NRMSE: 0.96 

± 0.01, r: 0.27 ± 0.02, NSE: 0.07 ± 0.01, and a testing performance of NRMSE: 0.95 ± 0.03, r: 0.33 ± 0.08, 

NSE: 0.10 ± 0.05. Overall, these results underscore the superiority of DNN, GBM, and DRF for salinity 

simulation, while highlighting the limitations of GLM (Figure 6; Table 5). Figure 7 presents scatterplots 

illustrating observed and modeled salinity values generated for the optimal model in each ML family during 

both training and testing phases. As depicted in Figure 7, the DRF model is performing well during training 

compared to other models. 

 

 

 

 

 

 

 

 

WQI ML Family Training Testing 
NRMSE r NSE NRMSE r NSE 

Sa
lin

ity
 DNN 0.90 ± 0.08 0.45 ± 0.10 0.19 ± 0.13 0.87 ± 0.06 0.49 ± 0.09 0.23 ± 0.12 

DRF 0.40 ± 0.01 0.96 ± 0.00 0.84 ± 0.01 0.93 ± 0.04 0.37 ± 0.08 0.13 ± 0.08 
GBM 0.86 ± 0.04 0.57 ± 0.07 0.25 ± 0.07 0.92 ± 0.03 0.46 ± 0.10 0.15 ± 0.07 
GLM 0.96 ± 0.01 0.27 ± 0.02 0.07 ± 0.01 0.95 ± 0.03 0.33 ± 0.08 0.10 ± 0.05 

Tu
rb

id
ity

 DNN 0.59 ± 0.13 0.81 ± 0.06 0.65 ± 0.11 0.63 ± 0.11 0.79 ± 0.11 0.60 ± 0.20  
DRF 0.36 ± 0.02 0.95 ± 0.01 0.87 ± 0.01 0.76 ± 0.10 0.65 ± 0.11 0.42 ± 0.18 
GBM 0.66 ± 0.17 0.79 ± 0.07 0.56 ± 0.14 0.73 ± 0.10 0.73 ± 0.13 0.47 ± 0.20 
GLM 0.93 ± 0.03 0.36 ± 0.08 0.13 ± 0.05 0.86 ± 0.07 0.63 ± 0.16 0.25 ± 0.14 
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Figure 7: Observed and modeled salinity values generated for the optimal model in each ML family during 

the training and testing phases. Red lines indicate a 1:1 relationship.

Figure 8 and Table 5 present the optimal turbidity models from the various ML families. All DNN, 

GBM, and DRF turbidity models demonstrated closely competitive performances. The optimal DNN model 

achieved a training performance of NRMSE: 0.59 ± 0.13, r: 0.81 ± 0.06, NSE: 0.65 ± 0.11, and a testing 

performance of NRMSE: 0.63 ± 0.11, r: 0.79 ± 0.11, NSE: 0.60 ± 0.20 (Figure 8; Table 5). The most 

significant input variables for this model were B4, B5, B3, B7, and B1. The relative importance for these 

inputs were 20%, 16%, 14%, 14%, and 14%, respectively. The GBM family provided the second-best 

performance. The optimal GBM model has a training performance of NRMSE: 0.66 ± 0.17, r: 0.79 ± 0.07, 
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NSE: 0.56 ± 0.14, and a testing performance of NRMSE: 0.73 ± 0.10, r: 0.73 ± 0.13, NSE: 0.47 ± 0.20. The 

performance of the DRF was slightly weaker than the DNN and GBM families. The optimal DRF model 

produced training performances of NRMSE: 0.36 ± 0.02, r: 0.95 ± 0.01, NSE: 0.87 ± 0.01, and testing 

performances of NRMSE: 0.76 ± 0.10, r: 0.65 ± 0.11, NSE: 0.42 ± 0.18. Once more, the GLM family 

produced models with the lowest performance. The optimal GLM model produced training performance 

metrics of NRMSE: 0.93 ± 0.03, r: 0.36 ± 0.08, NSE: 0.13 ± 0.05, and testing performance of NRMSE: 

0.86 ± 0.07, r: 0.63 ± 0.16, NSE: 0.25 ± 0.14 (Figure 8; Table 5). Figure 9 depicts scatterplots that illustrate 

the relationship between observed and modeled turbidity values produced by the optimal model from each 

ML family during both training and testing phases. All model families tend to overpredict turbidity values 

during the training phase. The performance of DNN, GBM, and DRF models is close for both training and 

testing.

Figure 8: Performance metrics for different turbidity ML model families (e.g., DNN, DRF, GBM, GLM). 
Metrics are displayed for the (a) training and (b) testing phases.
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1.6.3. Applications of Optimal Models 

The optimal model for chlorophyll-a was determined to be the calibrated empirical C2 model. 

However, for salinity and turbidity, the optimal models were identified as DNN models. These models were 

then used to retrieve WQIs across all of Matagorda Bay. Figure 10 provides examples of the retrieved 

products for August and November of 2018.  

Spatial and temporal variations in WQIs are outside the scope of this study. However, turbidity 

reflects the clarity and suspended particle levels in the water (Davies-Colley & Smith, 2001), chlorophyll-

a is a key indicator of phytoplankton and algae levels (Boyer et al., 2009; Kasprzak et al., 2008; Rakocevic-

Nedovic & Hollert, 2005), and salinity is crucial for understanding the bay's conditions and the organisms 

it can support  (Aguilar, 2017; Marshall et al., 2019; Onabule et al., 2020).  

The high spatial resolution of WQI data, such as those produced in this study, provides opportunities 

to analyze and monitor trends in the health of aquatic systems, significantly contributing to previous 

conservation and pollution assessment efforts (El-Zeiny & El-Kafrawy, 2017; Snyder et al., 2017). 

Specifically, these data could be used to (1) expand in-situ observational footprints and improve current 

efforts to conserve, enhance, and restore important aquatic habitats; (2) define areas of “anomalous” WQIs 

that could need further future investigation; (3) enable a demonstration and use of satellite observations to 

improve understanding of factors controlling spatial and temporal variability of WQ across complex aquatic 

systems; and (4) help realize an opportunity and process to enable standard WQ monitoring protocols to be 

expanded and complemented by free satellite products.  
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Figure 9: Observed and modeled turbidity values generated for the optimal model in each ML family 
during the training and testing phases. Red lines indicate a 1:1 relationship.  
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1.7. Discussion 

Performance of the implemented empirical and ML models are influenced by the quality of input 

datasets. Landsat-8 surface reflectance data showed reasonable quality over Matagorda Bay. Relevant 

studies indicate a significant correlation (r: 0.70) between Landsat-8-derived and in-situ-derived surface 

reflectance data (Schild et al., 2017). In addition, we removed pixels over cloud-contaminated regions and 

these with negative surface reflectance. Atmospheric conditions can significantly affect the quality of 

Landsat-8 imagery. Aerosols, clouds, and water vapor in the atmosphere can scatter and absorb light, 

leading to errors in the measured surface reflectance values (Kaufman et al., 1997; Vermote et al., 2016). 

However, Landsat-8 level 2 data used in this study is atmospherically corrected (Danbara, 2014; Lim & 

Choi, 2015). Landsat 8, like any satellite, has a calibration process to ensure the accuracy of its radiometric 

measurements (Danbara, 2014; Lim & Choi, 2015). The angle of the sun and the presence of sun glint 

(sunlight reflecting directly off the water's surface) can impact the reflectance measurements (Misra et al., 

2018; Pahlevan et al., 2017; Wei et al., 2018). To reduce these effects, we removed these pixels from our 

modelling exercise.  
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Figure 10: Modeled WQI data produced using optimal salinity, turbidity, and chlorophyll-a models over 

Landsat-8 images acquired on (a, c, e) August 22, 2018, and (b, d, f) November 26, 2018. 

 

Matagorda Bay is influenced by four major rivers: the Colorado River, the Lavaca River, the 

Carancahua River, and the Tres Palacios River. Suspended solids and dissolved organic matter from these 

rivers can directly affect water turbidity, salinity, and reflectance in the area (F. Wang & Xu, 2008). Colored 

dissolve organic matter, a yellow substance, contains inherently optical properties that affect surface 

reflectance (Binding & Bowers, 2003; Bowers & Brett, 2008). In addition, previous studies have reported 

significant negative correlations between salinity and total suspended solids (Fang et al., 2010). In this 

study, correlations of 0.05 ± 0.04 was estimated between salinity and turbidity. Turbidity, dissolved organic 

matters, and suspended solids directly influence water color and spectral reflectance. This indirect 

relationship between salinity and spectral bands motivated the use of Landsat 8 data to estimate salinity, a 

non-optical WQI. Similar principles have been applied in several studies utilizing Landsat-5 (Khorram, 
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1985; Lavery et al., 1993; Nazeer & Bilal, 2018; Vuille & Baumgartner, 1993; Xie et al., 2013; Zhang et 

al., 2012). MODIS (Urquhart et al., 2012) , and Landsat-8 (Ansari & Akhoondzadeh, 2020; Nguyen et al., 

2018; Zhao et al., 2017) data for salinity retrieval. However, the relatively lower correlation between 

Landsat-8-derived spectral reflectance and salinity might explain the significantly lower performance of 

empirical models and the relatively lower performance of the ML over Matagorda Bay.   

 

1.7.1. Empirical Models 

Most uncalibrated empirical models produced poor performance measures. The inadequacies of these 

models are more likely due to their application in water bodies, for which they were not originally designed. 

These models were initially developed across geographic regions encompassing lakes, rivers, and estuaries, 

each with distinct surface areas, hydrological conditions, and surface reflectance signatures. These 

discrepancies between the model's training conditions and the environmental characteristics of Matagorda 

Bay contribute to their poor performance. 

The empirical models, however, demonstrated improved performance when calibrated over 

Matagorda Bay. The calibrated chlorophyll-a models showed the most significant improvement. The 

average ± standard deviation of the NRMSE, r, and NSE measures increased from 126.91 ± 424.70, 0.42 ± 

0.67, and -1961890.27 ± 6791336.75 for uncalibrated models to 0.91 ± 0.03, 0.94 ± 0.04, and 0.89 ± 0.06 

for calibrated models, respectively. The highest performance of the calibrated models was reported for 

Model C2, which used B1, B3, B5, B6, B7. These bands were all highly correlated (r > 0.80) to in-situ 

chlorophyll-a values, which likely made it easier for this model to generalize a linear relationship between 

surface reflectance and chlorophyll-a measurements. The metrics of the calibrated C2 model outperform 

metrics published in previous studies (0.74 ± 0.12) (Elangovan & Murali, 2020).  

It is notable that the number of data points utilized in creating the empirical models for chlorophyll-

a (total: 17) may raise concerns. However, these measurements were the only ones available that coincided 

with Landsat-8 overpasses over Matagorda Bay. They represent the sole data points temporally 

synchronized with the dates of Landsat-8 acquisition throughout the 10-year study period (2014–2023). 

Some of these in-situ chlorophyll-a data were gathered in the field when weather conditions allowed, while 

others were obtained from historical records (e.g., TCEQ, TWPD, LCRA). Results of our chlorophyll-a 

models should be used with caution. We acknowledge that a larger sample size would undoubtedly enhance 

the robustness of the empirical models, and we are actively pursuing efforts to acquire additional data to 

expand the sample size in future studies. Despite the limited sample size, our primary objective was to 

evaluate the feasibility of empirical models in estimating chlorophyll-a using the available data. Empirical 

salinity models also experienced improvements after calibration over Matagorda Bay. The RMSE, r, and 
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NSE measures increased from 180.47 ± 0.01, 0.00 ± 0.22, and -32637.09 ± 2.18 for uncalibrated models to 

0.24, 0.24, and 0.06 for the calibrated model, respectively. The calibrated salinity models, Sn1 and Sn2, 

used B1, B2, B3, and B4. These bands indicated a weakly inverse relationship (r: -0.16 to -0.09) with in-

situ salinity measurements. This weak relationship likely hinders the empirical models in establishing 

meaningful linear relationships between in-situ salinity observations and surface reflectance. In addition, 

the performance of calibrated salinity models was significantly lower than the performance reported for the 

original study. In its original applications, the r values for Sn1 and Sn2 were 0.84 (Zhao & Temimi, 2016) 

and 0.77 (Zhao & Temimi, 2016), respectively. However, the original studies only used 33 data points, 

which might have led to overfitting and produced misleading performance measures.  

The calibrated turbidity models demonstrated some improvement in performance. The NRMSE, r, 

and NSE measures increased from 5.86 ± 17.78, 0.07 ± 0.08, and -337.09 ± 1553.51 for uncalibrated models 

to 0.15 ± 0.10, 0.13 ± 0.09, and 0.03 ± 0.03 for calibrated models, respectively. The highest performing 

calibrated empirical turbidity model is T12, which used B2, B3, B4, and B5. These bands had a positive, 

but low, correlation to in-situ turbidity (r: 0.05 - 0.12). Model T12 had higher performances reported in its 

original studies (r: 0.85 ± 0.18) compared to that calibrated to Matagorda Bay (Liu & Wang, 2019). This 

might be due to the complex turbidity patterns over Matagorda Bay.  

1.7.2. ML Models 

ML algorithms performed better for both salinity and turbidity compared to empirical models. ML 

algorithms are much more complex, and equipped to ascertain intricate relationships between inputs 

(surface reflectance) and target (salinity and turbidity) datasets (Zhu et al., 2022). In addition, ML 

algorithms are better able to map nonlinear relationships, such as those between salinity and turbidity and 

surface reflectance (correlation between salinity and surface reflectance: -0.10 ± 0.04; correlation between 

turbidity and surface reflectance 0.04 ± 0.04).  

The DNN, GBM, and DRF families examined in this study demonstrated acceptable performance 

when used to retrieve turbidity and salinity over Matagorda Bay. Notably, DNN performed better than the 

other families when simulating both salinity and turbidity. DNN is widely recognized for its efficacy in 

modeling high-dimensional and complex datasets, particularly those characterized by intricate nonlinear 

associations between input and target variables (Guo et al., 2022; Wei et al., 2022). DNNs excel in 

extracting hierarchical features from input and target data, endowing them with stronger modeling 

capabilities relative to alternative ML families (Guo et al., 2022; Mathew et al., 2021; Peterson et al., 2020). 

The GBM family consistently secured the second-highest model performance when simulating salinity and 

turbidity. However, no large differences were found in the performance of both DRF and GBM. 

Remarkably, the GLM family consistently produced the poorest-performing models for both salinity and 
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turbidity simulations. GLM models adopt a straightforward linear regression approach and lack the 

intricacy required to dissect the multifaceted relationships inherent in the multidimensional and nonlinear 

datasets used in this study. Consequently, the limitations of GLM models prevent them from effectively 

capturing the complexities in the data.  

Most of the ML models exhibited a slight decrease in performance during the testing phase compared 

to the training phase. This relatively modest reduction in testing performance can be attributed to the limited 

number of training samples (Fallatah et al., 2022; Sun et al., 2021). For instance, the salinity models were 

trained with only 382 datapoints, while the turbidity models had a training set of 138 datapoints. Another 

potential explanation for the variation in performance between the training and testing sets may stem from 

differences in the input/target patterns within the model inputs in the testing set compared to those in the 

training set. Salinity models were tested with 96 datapoints, while turbidity was tested with 35. Attempts 

to model chlorophyll-a using ML models were unsuccessful, likely due to a lack of in-situ data. 

Chlorophyll-a measurements have only 17 datapoints. It is likely that this dataset did not provide large 

enough target time series to allow the ML algorithms to adequately analyze the complex relationship 

between surface reflectance and the provided chlorophyll-a observations. 

1.8. Conclusion 

The integration of public-domain remote-sensing data-modeling techniques has significantly 

enhanced WQI monitoring capabilities. Landsat-8 offers a unique opportunity to observe spatiotemporal 

trends of WQ within expansive aquatic ecosystems. With advances in modeling techniques, numerous 

inquiries have arisen regarding the most effective approaches to model WQIs. This study examines the 

capabilities of both empirical and ML models to determine optimal methods for retrieving salinity, 

turbidity, and chlorophyll-a from Landsat-8 data over Matagorda Bay, Texas. 

The uncalibrated empirical models exhibited poor performance when applied to Matagorda Bay. 

The unique environmental characteristics of Matagorda Bay contributed to the failure of these uncalibrated 

models to produce WQIs. However, when calibrated over Matagorda Bay, model performance improved 

when used to retrieve chlorophyll-a data. ML models, on the other hand, yielded meaningful results for 

both salinity and turbidity. Among the implemented ML families, DNN demonstrated the highest 

performance. This model was able to successfully map complex nonlinear relationships between Landsat-

8 reflectance datasets and salinity and turbidity.  

Our methodology offers a point of reference, a structured framework, and valuable insights for 

employing empirical and ML models on Landsat-8 data to characterize WQIs. This approach encourages 

broader, enhanced use of remote-sensing datasets by the scientific community, end-users, and decision-

makers. Given the higher performance of calibrated C2 empirical models for chlorophyll-a and DNN 
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models for both salinity and turbidity, the modeled WQIs could be used to expand the footprint of in-situ 

observations and improve current efforts to conserve, enhance, and restore important habitats in aquatic 

ecosystems. The developed approach serves as a guide to enhance monitoring procedures for aquatic 

ecosystems.  
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Section (II) 
Oyster Habitat Suitability Indices for Matagorda Bay, Texas: A Comparative Analysis 

2.1.  Abstract 

Oysters in Matagorda Bay have experienced population declines over the past century. Oyster Habitat 

Suitability Index (OHSI) models evaluate habitat quality and may greatly aid restoration projects. 

Environmental and water quality indicators are used to generate these OHSIs. This study used remote-

sensing-derived water quality datasets from 2018 to 2023 to produce five OHSI models for Matagorda Bay 

on both monthly and annual scales. Each of these models used five physical parameters (model inputs): 

salinity, turbidity, water temperature, depth, and water velocity. OHSI1 is a classification-based model, 

classifying habitat quality in each model input based on specific thresholds that define unsuitable, moderate, 

and optimal habitat conditions. OHSI2 is a regression-based model that regressed these inputs against total 

live oyster count to depict habitat quality. Both unweighted and weighted versions of OHSI1 and OHSI2 

were implemented. OHSI3 is a machine learning (ML)–based model that uses total live oyster count as a 

target. OHSI scores from all models generally demonstrated spatial and temporal variability in habitat 

quality. Across all models, optimal habitat was generally found in shallower regions, near sources of 

freshwater, and in areas with high water flow. Unsuitable habitat was generally identified in the primary 

bay, where water depths are greater and water flow is slow. OHSI1 indicated that spring and fall were 

optimal for oysters, while winter was unsuitable. OHSI2 identified winter months as optimal and summer 

as unsuitable. Conversely, OHSI3 found the most suitable conditions in summer and determined that spring 

and late fall were unsuitable. This study evaluated performance variations among the various OHSI 

modeling approaches and is intended to serve as a framework for future OHSI modeling efforts. The OHSI 

models generated from this study provide valuable insights into long-term habitat restoration activities over 

Matagorda Bay. 

2.2.  Introduction 

 Texas is the second largest supplier of the Eastern oyster in the nation. However, Matagorda Bay 

supplies less than 5% of the Texan harvest (Haby, 2012). Historical oyster reefs in Matagorda Bay were 

once economically and ecologically significant, but these reefs have experienced drastic population declines 

over the past century (Fisheries & Moore, 1907). Declining populations in the Gulf of Mexico are largely 

due to exploitive harvesting and dredging practices as well as poor water quality (Aguilar, 2017; Pollack et 

al., 2012).  
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The removal of oysters from local ecosystems leads to many adverse effects because oysters play a 

fundamental role in maintaining and improving marine ecosystems (Grabowski & Peterson, 2011). When 

oysters are removed from estuaries, water quality worsens, and habitat many marine species is significantly 

affected (Lenihan, 1999; Plutchak et al., 2010; Sharma et al., 2016). Oysters are filter feeders that improve 

water quality by removing nutrients and sediments which can be harmful to marine organisms and 

vegetation (Aguilar, 2017; Culbertson, 2008; TinHan et al., 2018). Without removing excess nutrients by 

oysters, there is an increased risk of algal blooms and anoxic conditions (Culbertson, 2008; De Santiago et 

al., 2019). Oysters also serve as habitat for many fishery species (Peyre et al., 2014; TinHan et al., 2018), 

providing interstitial living space and foraging grounds for predators (Stanley et al., 2024). The removal of 

oysters decreases the abundance, diversity, and biomass of the marine species that use these habitats 

(Stanley et al., 2024).   

 Oyster restoration activities are increasingly critical in replenishing oyster populations and 

improving environmental quality (De Santiago et al., 2019). In Matagorda Bay, oyster restoration projects 

aim to stimulate oyster production and provide new habitat for reefs to expand (De Santiago et al., 2019). 

Oyster restoration specifically targets historically productive reefs (Puckett et al., 2018), because viable 

substrate is critical for successful restoration (Chowdhury et al., 2019). However, many other factors 

influence habitat quality for oysters, such as salinity and food availability (Chowdhury et al., 2019; 

Theuerkauf & Lipcius, 2016). Restoration efforts are put at risk when sites are selected without considering 

the other physical and biological factors that influence oyster’s ability to survive (Pollack et al., 2012).   

 Restoration site selection may be aided through tools such as Habitat Suitability Indices (HSIs) 

(Pollack et al., 2012). Oyster Habitat Suitability Index (OHSI) models evaluate and score marine habitats 

based on their ability to support oyster life (Pollack et al., 2012; Theuerkauf & Lipcius, 2016). OHSIs 

quantify the physical requirements of oysters (Brown & Hartwick, 1988; Puckett et al., 2018; Theuerkauf 

& Lipcius, 2016), and score habitat accordingly. This provides exact locations of habitat ranging from 

unsuitable to optimal (Brown & Hartwick, 1988; Cho et al., 2012).  

OHSI modeling has been performed for oyster populations across the world. Table 6 presents the 

input variables and modeling techniques previously used to generate OHSI models. OHSI are generally 

produced through weighted (Pollack et al., 2012; Snyder et al., 2017) or unweighted (Cake, 1983; Cho et 

al., 2012; Soniat & Brody, 1988; Theuerkauf & Lipcius, 2016) overlay models. Overlay models are 

analytical tools used in Geographic Information Systems to combine multiple layers of spatial data and 

thereby identify areas where different datasets overlap or intersect (Reddy, 2018). The MaxEnt model has 

also been used to evaluate oyster habitat suitability (Linhoss & Mickle, 2022). This model is more complex 
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than the overlay approach; it provides information about habitat quality through probability of oyster 

presence based on select physical parameters (Linhoss & Mickle, 2022).  

OHSIs are most effective when they consider the physical parameters that best suit the needs of a 

local population. The most frequently implemented model parameters were salinity (Cake, 1983; Cho et 

al., 2012; Pollack et al., 2012; Soniat & Brody, 1988; Theuerkauf & Lipcius, 2016), substrate (Cake, 1983; 

Soniat & Brody, 1988; Theuerkauf & Lipcius, 2016), and temperature (Cho et al., 2012; Pollack et al., 2012; 

Snyder et al., 2017). Other commonly used parameters include turbidity (Pollack et al., 2012; Snyder et al., 

2017), water depth (Pollack et al., 2012; Theuerkauf & Lipcius, 2016), and chlorophyll-a (Cho et al., 2012; 

Snyder et al., 2017).  Over specific regions of Matagorda Bay (Figure 11), Turner et al. (2016) generated 

an OHSI for Tres Palacios and Carancahua Bays using a regression-based model. This OHSI model used 

mean salinity, minimum salinity, and salinity during spawning as variables to explain habitat suitability.  

OHSIs generated from overlay models have faced criticism because they are biased and inherently 

simple (Theuerkauf & Lipcius, 2016). Unweighted models do not consider varying significance of physical 

parameters (Theuerkauf & Lipcius, 2016), while weighted models assume relationships between physical 

conditions and oyster populations (Cho et al., 2012). OHSI models like these depend heavily on theory 

(Lavallin, 2021). Model validation is critical to ensure the model can effectively predict suitable habitat 

(Puckett et al., 2018; Soniat & Brody, 1988; Theuerkauf & Lipcius, 2016). However, many OHSI overlay 

models are unvalidated (Snyder et al., 2017). Models may be validated by correlating OHSI scores to a 

biologic response from the oyster, such as population density (Puckett et al., 2018; Soniat & Brody, 1988; 

Theuerkauf & Lipcius, 2016) and biomass (Smith et al., 2022). 

ML provides a new approach to modeling OHSI (Garcia-Quintas et al., 2023; Santoso et al., 2023). 

ML algorithms could be used to conceptualize complex relationships between biophysical conditions (e.g., 

model inputs) and oysters. These models are data driven, meaning they independently form a relationship 

between physical parameters and the response from the oyster population (Lavallin, 2021). These models 

are also innovative because they rely less on theory (Lavallin, 2021) and have been tested with independent 

data. ML models have produced HSIs for species such as the shortfin mako shark (Garrison, 2023), seabirds 

(Garcia-Quintas et al., 2023), grizzled leaf monkey (Santoso et al., 2023), and the Asian tiger mosquito 

(Georgiades et al., 2023); however, this approach is not commonly used for OHSIs.  
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Table 6: Input variables and model types used to generate OHSIs, globally. 

 
Source 

(Cake, 1983) (Soniat & 
Brody, 1988) 

(Theuerkauf 
& Lipcius, 

2016) 

(Pollack 
et al., 
2012) 

(Cho 
et al., 
2012) 

(Snyder 
et al., 
2017) 

(Linhoss 
& Mickle, 

2022) 

(Turner 
et al., 
2016) 

In
pu

t p
hy

si
ca

l p
ar

am
et

er
s 

Salinity X X X X X  X X 
Turbidity    X  X   

Temperature    X X X X  
Depth   X X     

Chlorophyll-a     X X   
Substrate X X X      

Suspended 
particulate 

matter 
    X    

Dissolved 
oxygen 

   X X  X  
Clutch coverage, 
suitable clutch X X       
Frequency of 
killing floods X X       

Disease/predator X X       
Larval 

transportation 
        

Abundance X X       
Hydrodynamics     X    

Bathymetry       X  
Dermo/disease/ 

parasites         

M
od

el
 ty

pe
 Weighted 

overlay model 
   X  X   

Unweighted 
overlay model X X X  X   X 

MaxEnt model       X  
 

 This study aims to generate different OHSI models over Matagorda Bay, primarily focusing on 

water quality, on both a monthly and an annual basis. These models considered five physical parameters: 

salinity, turbidity, temperature, depth, and water velocity (Figure 12). This study produces OHSIs through 

three modeling approaches: classification-based models (OHSI1), regression-based models (OHSI2), and 

ML models (OHSI3; Figure 33). Unweighted and weighted versions were implemented for OHSI1 and 

OHSI2. OHSI scores produced by OHSI1 and OHSI2 models were validated using the Texas Parks and 

Wildlife Department (TPWD) oyster dredge dataset. We intended to analyze the variability and performance 

of OHSI scores produced through various modeling approaches. OHSI maps produced from this study could 

be used to indicate exact locations with high and low capability to sustain oyster populations in Matagorda 

Bay. 
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2.3. Study Area 

Matagorda Bay, also known as the Lavaca-Colorado Estuary, is the second-largest estuary system 

in Texas (Figure 11). It is comprised of a primary bay, Matagorda Bay, and secondary bays, including 

Lavaca Bay, Tres Palacios Bay, and Carancahua Bay (Figure 11). The estuary is primarily fed by the 

Colorado River, Lavaca River, and Tres Palacios River. These rivers are critical to water quality in 

Matagorda Bay because freshwater input regulates salinity, transports sediments, and supplies nutrients that 

stimulate primary production (Wilber & Bass, 1998).  

 Matagorda Bay is home to many oyster reefs, which are generally concentrated near sources of 

freshwater (Figure 11). Half Moon Reef is large, historically productive reef that covered 200 ha in the 

early 1900s, when oyster production was at its peak (Pollack et al., 2012). Frequently harvested areas of 

Half Moon Reef were declared void in a 1907 study (Fisheries & Moore, 1907), before becoming 

completely barren of oysters by the 1930s (Aguilar, 2017).  

In addition to overharvesting, dredging also depleted populations. In the early 1900s, many Texan 

estuaries were dredged for oyster shell, which was used as construction material (Pollack et al., 2012). 

Unregulated dredging resulted in major habitat loss throughout Matagorda Bay, effectively removing and 

depleting local oyster populations (De Santiago et al., 2019). Permitted dredging led to further depletion of 

oysters in Matagorda Bay; permits approved between 1961 and 1982 granted permission to dredge 

approximately 213 acres of oyster reef in total (Luckenbach et al., 1999). 

Agencies such as TPWD and the U.S. Army Corps of Engineers (USACE) have pursued oyster reef 

restoration efforts in Matagorda Bay (Culbertson, 2008). Such efforts aim to restore substrate to provide 

greater opportunity for spat recruitment and inspire population growth (De Santiago et al., 2019; Peyre et 

al., 2014). Half Moon Reef is one of the largest reef restoration projects in the United States (De Santiago 

et al., 2019). The reef was restored in 2014 using 27 parallel rows of limestone and concrete substrate (De 

Santiago et al., 2019). Restoration caused notable increases in spat recruitment and increased oyster 

population density at the reef (De Santiago et al., 2019).  
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Figure 11: Matagorda Bay, including the primary (Matagorda) and secondary bays (Lavaca Bay, 

Carancahua Bay, and Tres Palacios Bay). Red polygons indicate regions of oyster reefs. These locations 

were obtained from the NOAA Gulf of Mexico Data Atlas and include surveys conducted between 2005 

and 2007 (Anson et al., 2011).  

 

2.4. Data  

OSHIs were produced over Matagorda Bay using five types of physical data: including salinity, 

turbidity, temperature, depth, and water velocity. These variables were selected because they are significant 

to oysters, as indicated by previous studies over Matagorda Bay and other Texan estuaries. Salinity, for 

example, is a key factor that contributes to oyster abundance, biomass, and spat recruitment (LaPeyre et al., 

2015; Marshall et al., 2021; Pollack et al., 2011). Oysters can tolerate a large range of salinity (Du et al., 

2021; Peyre et al., 2019); however, prolonged events of critically low or high salinities result in mortality 

(Du et al., 2021). Low salinity reduces spat settlement yield (Marshall et al., 2019; Pollack et al., 2011), 
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while high concentrations are associated with oyster mortality due to increased disease and parasites 

(Culbertson, 2008; Du et al., 2021).

Figure 12: (a) Locations of in-situ salinity, turbidity, and temperature datasets. Salinity and turbidity data 
were used to produce ML models to simulate salinity and turbidity from Landsat -8 images over Matagorda 
Bay.  Temperature data were used to validate the ECOsystem Spaceborne Thermal Radiometer Experiment 
on Space Station (ECOSTRESS)-derived water temperature. (b) Locations of TPWD oyster samples. This 
dataset was used to produce OHSI2 and OHSI3 models and to validate OHSI1 and OHSI2.
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Turbidity has been found to have an inverse relationship with species richness and diversity (Aguilar, 

2017). Turbidity influences filtration capabilities and sedimentation rates (Zimmerman et al., 2007). Low 

turbidity has been linked to improved filtration capabilities (Ehrich & Harris, 2015). Elevated turbidity 

inhibits filtration capabilities (Ehrich & Harris, 2015; Wang et al., 2008) and leads to a reduction in primary 

production, decreased growth rates, and burial of biomass (Southwell et al., 2017; Wilber & Clarke, 2010).  

Temperature has a significant impact on oyster biomass (Aguilar, 2017), spawning capabilities (Casas 

et al., 2018), and filtration rates (Snyder et al., 2017). Low temperatures reduce the oysters’ filtration rates, 

and therefore inhibit feeding (Bagenda et al., 2019). Spawning in regions such as Matagorda Bay generally 

begins when temperatures reach 25°C (Casas et al., 2018). However, higher temperatures promote disease 

and inhibit filtration (Ehrich & Harris, 2015; Motes et al., 1998). 

Water velocity influences recruitment, settlement rates, and the delivery of nutrients to oyster beds 

(Snyder et al., 2017). Low water velocities increase the risk for sedimentation, which requires oysters to 

expend greater energy to filter the water column; it may clog gills, resulting in mortality (Stanley et al., 

2024). Greater water velocities improve water quality, increase food supply, and increase oyster growth 

(Stanley et al., 2024). 

Water depth is a factor that controls light penetration, which influences water temperature and 

phytoplankton growth in the lower water column, where oysters reside (Porter et al., 2004). Healthy oyster 

beds are generally found in shallower regions (Chapman et al., 2021). This study used live oyster count as 

an indicator of suitable habitat and oyster health. Live count is a measure used to observe the natural 

settlement (Wilkie et al., 2013) of oysters. Relatively high live oyster count indicates optimal physical 

conditions and lower count indicates unsuitable habitat quality. 

In this study, turbidity and salinity were retrieved from Landsat-8 images using ML models (Section I). 

These products were generated over Matagorda Bay during the period from 2018 to 2023 at 100-m spatial 

resolution. Figure 12a shows the spatial distribution of the in-situ measurements used to generate these 

models. Water temperature was generated from the ECOSTRESS images. The ECOSTRESS instrument 

has been collecting data on the International Space Station since June 2018 (Fisher et al., 2020; Weidberg 

et al., 2023). The mission of ECOSTRESS was to observe evapotranspiration, which is analyzed through 

surface temperature and emissivity (Fisher et al., 2020). This instrument records surface temperature 

through five thermal infrared radiation bands (Fisher et al., 2020). In-situ temperature observations (n: 893) 

were obtained from Texas Commission on Environmental Quality (TCEQ, 2023), Lower Colorado River 

Association (LCRA, 2023), and TWPD (Figure 12a). Sea surface temperature was extracted from 
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ECOSTRESS images over dates and locations of in-situ samples during the period from 2018 to 2023. 

ECOSTRESS-derived temperature images were resampled to 100 m. 

Water depth across Matagorda Bay was obtained from the National Oceanic and Atmospheric Agency 

(NOAA) Bathymetry Digital Elevation Model (BDEM). This dataset was produced from 23 bathymetric 

surveys collected during the period from 1934 to 1992 (National Centers for Environmental, 1998). Mean 

monthly tide provided by NOAA’s BDEM was used to generate monthly depth datasets. The monthly depth 

images were resampled to a 100-m spatial resolution.  

Water velocity was obtained from the TxBLEND model, a hydrodynamic and salinity transport model 

that simulates water velocity. This model uses generalized wave continuity and momentum equations to 

simulate water velocity (Matsumoto et al., 2014; Schoenbaechler et al., 2011). Net water velocity was 

computed using average circulation throughout the bay over several tidal cycles. The velocity product was 

generated from a representative 28-day period (August 11–September 7, 1997) with median salinity (23.87 

psu) that is closest to the long-term average. This dataset has a spatial resolution of 100 m.  

Oyster dredging datasets were obtained from TPWD for samples collected between 2018 and 2023. 

Figure 12b illustrates the spatial variability of these sample locations. Dredge samples were collected during 

a 30-second tow. The dredge sample was used to calculate total live count, total dead count, spat count, and 

the average length of shells dredged. The TPWD dataset was comprised of 568 samples, and provided water 

quality data at the locations of oyster samples, including temperature, salinity, turbidity, and dissolved 

oxygen. 

Input datasets for the OHSI2 and OHSI3 models were extracted at the locations and dates coinciding 

with TPWD oyster samples (Figure 12b). Because not many TPWD sample collection and acquisition dates 

coincided with both Landsat-8 and ECOSTRESS acquisition dates, temperature, salinity, and turbidity data 

was extracted from images within ±14 days of the TPWD sample date. 

2.5. Methods 

Three approaches were used to generate OHSI models over Matagorda Bay, including 

classification-based models (OHSI1), regression-based models (OHSI2), and ML-based models (OHSI3; 

Figure 13). OHSI1 uses classified (class 1, class 2, and class 3) datasets as model inputs and scores habitats 

as unsuitable (class 1), moderate (class 2), or optimal habitat (class 3). OHSI2 uses suitability indices (SIs) 

computed for each model input variable. SIs are generated via regression analysis, quantifying the complex 

relationship between a biologic response—live oyster count, in this case—to an individual physical 

parameter (e.g., salinity, turbidity, velocity, temperature, depth). OHSI2 models produce habitat scores 

ranging from 0 to 1, depicting a range of suitability from unsuitable (score 0) to optimal (score 1). OHSI1 
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and OHSI2 were implemented using both weighted and unweighted versions (Figure 13). Weights of each 

input parameter were assigned based on based on these reported in previous studies (Pollack et al., 2012). 

However, due to the wide range of inputs used to generate OHSI models, no previous OHSI model has 

implemented the same combination inputs as the ones used in this study. Therefore, the weights of our 

model inputs were manipulated to reflect those of previous studies but not replicating them. The weights 

selected for model inputs are presented in Table 7. Salinity was assigned the greatest weight (40%) and 

depth was also assigned significant weight (25%). Weights assigned to the other model parameters include 

10% for turbidity, 15% for temperature, and 10% for velocity. Lastly, OHSI3 generated from ML models 

that predict total live counts using the five model inputs. OHSI3 provides predicted total live oyster count, 

where higher oyster counts indicate optimal habitat quality and lower indicate unsuitable habitat.  

 
Figure 13: Overview of the modeling approaches for OHSI over Matagorda Bay.  

 

Table 7: Weights assigned to each model input used for OHSI1w and OHSI2w models. 

Physical Parameter Weight 
Salinity 40% 

Turbidity 10% 
Temperature 15% 

Depth 25% 
Water Velocity 10% 
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2.5.1. Classification-Based Models (OHSI1) 

 Many studies generated OHSI models based on the classification of inputs into unsuitable, 

moderate, and optimal classes (Pogoda et al., 2023). In this study, we generated OHSI1 models by 

classifying model inputs into three classes, depicting unsuitable (class 1), moderate (class 2), and optimal 

(class 3) conditions. Thresholds for these conditions were established from recent literature published over 

Texan and Floridian estuaries, as outlined in Table 8.  

For salinity, the optimal conditions threshold was between 12 and 24 psu. Moderate conditions 

ranged from 7 to 12 psu, while unsuitable conditions were identified as those with salinity less than 7 psu 

or greater than 24 psu. Optimal turbidity concentrations were classified as concentrations less than 20 NTU, 

while unsuitable conditions were greater than 20 NTU. Temperature is optimal between 20 and 30°C, 

moderate from 15 to 20°C and from 30 to 35°C, and unsuitable when temperature is less than 15°C or 

greater than 35°C. Depth is optimal between 1 and 2 m, moderate from 0.5 to 1 m and 2 to 3.5 m, and 

unsuitable depth is less than 0.5 m or more than 3 m. Velocity is optimal with values greater than 0.01 m/s 

and unsuitable with values lower than 0.01 m/s. 

Table 8: Optimal, moderate, and unsuitable conditions for each input used to generate OHSI1 models.  

Input 
Parameter 

Unit Unsuitable 
Conditions 
(Class 1) 

Moderate 
Conditions 
(Class 2) 

Optimal 
Conditions 
(Class 3) 

Sources 

Salinity psu <7, >24 7-12 12-24 (Barnes et al., 2007; Dekshenieks et 
al., 1993; Lebreton et al., 2021; 
Pollack et al., 2012; H. Wang et al., 
2008) 

Turbidity NTU >20 - <20 (Aguilar, 2017; Dekshenieks et al., 
1993) 

Temperature ºC <15, >35 15-20, 30-35 20-30 (Barnes et al., 2007; Chávez-
Villalba et al., 2010; Dekshenieks et 
al., 1993; Peyre et al., 2021; Pollack 
et al., 2012) 

Depth m <0.5, >3.0 0.5-1, 2-3.5 1-2 (Cassis et al., 2011; Pollack et al., 
2012) 

Water 
Velocity 

m/s <0.01 - >0.01 (Campbell & Hall, 2019) 

 

 Two versions of the OHSI1 model were generated: unweighted (OHSI1uw) (Eq. 1) and weighted 

(OHSI1w) (Eq. 2): 

1௨௪ܫܵܪܱ  = (ܵ + ݑܶ + ܶ݁ + ܦ + ܸ) 5ൗ        (5) 

1௪ܫܵܪܱ  = ௌݓ) ∗ ܵ) + ௨்ݓ) ∗ (ݑܶ + ௘்ݓ) ∗ ܶ݁) + ஽ݓ) ∗ (ܦ + ௏ݓ) ∗ ܸ)  (6) 



48 
 

 

where S, Tu, Te, D, and V are the classified salinity, turbidity, temperature, depth, and velocity datasets, 

respectively; w values are the weights assigned to salinity (ws), turbidity (wtu), temperature (wte), depth (wd), 

and velocity (wv). OHSI habitat scores produced by OHSI1 models range from 1 to 3, indicating unsuitable 

(1) to optimal (3) habitat conditions. Outputs from these models were validated using total live counts, total 

dead counts, and total spat counts, all provided by the TPWD. These indicators are indicative to oyster 

abundance (Pollack et al., 2012).  

 

2.5.2. Regression-Based Models (OHSI2)  

 OHSI2 used SIs as model inputs. SIs are values assigned to concentrations of a parameter, where 

higher values signify positive effects and lower values indicate negative effects. SIs were produced through 

regression analysis using the Max-Bin approach advanced in (Turner & Montagna, 2016). The Max-Bin 

approach is a method to analyze the relationship between a biologic response and a physical parameter. The 

primary purpose of these models is to evaluate peak responses of an individual species and describe ideal 

conditions of a specific physical (input) parameter (Turner & Montagna, 2016). Biological responses 

include species observations, such as abundance, shell length, or biomass, whereas, physical parameters 

include salinity and depth (Turner & Montagna, 2016). This model assumes a relationship between the 

physical parameter and the biological response; further, there is a specific range of the physical parameter 

that peaks the biologic response. In addition, the biologic response is assumed to decline in values of the 

physical response before and after the peak biologic response (Turner & Montagna, 2016). This study used 

live oyster count as the biologic response. The Max-Bin regression model was implemented to evaluate the 

relationship between the biologic response and salinity, turbidity, temperature, depth, and velocity. The 

following logarithmic model was implemented:  

 ܻ = ܽ × exp (−0.5 × (ln (௑ ௖ൗ௕ )ଶ)      (7) 

where Y is the biological response, oyster total live count in this case, and X is the ecological driver (e.g., 

salinity, turbidity, temperature, depth, and velocity). Model parameters a, b, and c describe the shape of the 

distribution curve, where a is the peak biological response, b is the skewness of the biological response, 

and c is the value of the biophysical parameter when the biological response is at its peak (Turner & 

Montagna, 2016). 
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Once the model parameters (a, b, and c) were generated using Eq. 3, they were used to generate SIs for 

monthly average salinity, turbidity, temperature, depth, and velocity datasets. SIs were then used as model 

inputs for OHSI2 models according to these equations:   

2௨௪ܫܵܪܱ  = ௦ܫܵ) + ௧௨ܫܵ + ௧௘ܫܵ + ௗܫܵ + (௩ܫܵ 5ൗ        (8) 

2௪ܫܵܪܱ  = ௦ݓ)  ∗ (௦ܫܵ + ௧௨ݓ) ∗ (௧௨ܫܵ + ௧௘ݓ) ∗ (௧௘ܫܵ + ௗݓ) ∗ (ௗܫܵ + ௩ݓ) ∗  ௩)  (9)ܫܵ

where SI is the suitability index for salinity (SIs), turbidity (SItu), temperature (SIte), depth (SId), and velocity 

(SIv), and w values are the weights assigned to salinity (ws), turbidity (wtu), temperature (wte), depth (wd), 

and velocity (wv). OHSI2 habitat scores produced range from 0 to 1, depicting unsuitable to optimal 

conditions. A quantile classification approach was employed to categorize the scores based on arbitrary 

thresholds. Scores greater than 0.388 were deemed optimal habitat, those ranging from 0.313 to 0.388 were 

classified as moderate habitat, and scores below 0.313 were considered unsuitable habitat. Outputs from 

these models were validated using total live counts, total dead counts, and total spat counts, provided by 

the TPWD.  

 

2.5.3. ML-Based Models (OHSI3) 

The OHSI3 model was generated using ML algorithms. Three ML algorithms were implemented, 

including deep neural network (DNN), distributed random forest (DRF), and gradient boosting machine 

(GBM).  The open-source H2O-AML (automated ML) platform was employed (accessible at: 

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html). H2O-AML provides user-friendly, fully 

automated supervised learning algorithms, catering to both those well-versed in the field and those without 

expertise (Truong et al., 2019). DNN is a feedforward network that uses multiple hidden layers composed 

of neurons to analyze complex relationships between inputs and target features (Kamilaris & Prenafeta-

Boldú, 2018; Mathew et al., 2017; Oyebisi & Alomayri, 2023; Tang et al., 2020). DRF combines multiple 

weak decision trees to produce a strong ensemble forest (Asgari et al., 2022; Shrivastav & Kumar, 2022). 

The GBM family generates an ensemble model using parallel regression trees (Natekin & Knoll, 2013; 

Shrivastav & Kumar, 2022). Comprehensive descriptions regarding structures and hyperparameters for 

H2O-AML families can be found on the H2O-AML website (https://docs.h2o.ai/h2o/latest-stable/h2o-

docs/automl.html). 

The input data for the OHSI3 model was comprised of live count as a model target and the salinity, 

turbidity, temperature, depth, and velocity as model inputs. Model inputs were normalized within the range 
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of 0 to 1 to guarantee equal consideration of all input variables. Input and target data were randomly split 

into training (64%), validation (16%), and testing (20%) frames. Each ML algorithm was simulated over 

50 runs, and the model with highest testing performance was reported for each algorithm. To prevent 

overfitting in each model, early stopping criteria were enforced, employing the mean-squared error as the 

stopping metric. This involved setting a stopping round value of 5 and a stopping tolerance of 0.0001. 

Model performance was evaluated through the Nash-Sutcliffe efficiency (NSE) coefficient, correlation 

coefficient (r), and normalized root mean square error (NRMSE).  

The predicted total live counts were used to generate the habitat scores. The assumption is that live 

oyster count is indicative of habitat suitability. Therefore, greater live count predicted by the OHSI3 model 

indicates more suitable habitat. A quantile classification approach was employed to categorize the predicted 

total live counts based on arbitrary thresholds. Total live counts greater than 9 were deemed optimal habitat, 

those ranging from 9 to 8 were classified as moderate habitat, and those below 8 were considered unsuitable 

habitat. 
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2.6. Results

2.6.1. Model Inputs

Figure 14a illustrates the relationship between in-situ and ECOSTRESS-derived temperature data 

extracted over Matagorda Bay. Temperature extracted from ECOSTRESS images displayed high 

correlation (r: 0.84) to in-situ data.  Relatively lower correlations were estimated between salinity and 

turbidity datasets retrieved from Landsat-8 data and in-situ observations (salinity r: 0.49; turbidity r: 

0.79; Figure 14b and 4c). 

Figure 14: Correlation between (a) in-situ and ECOSTRESS-derived temperature, (b) in-situ and 
Landsat-8-retrived salinity, and (c) in-situ and Landsat-8-retrived turbidity. Data shown in both (b) and (c) 
represent testing outputs for ML models used to retrieve salinity and turbidity from Landsat-8 data. Red 
lines indicate a 1:1 relationship.
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2.6.2. Inputs for OHSI1  

Statistics for monthly and annual OHSI1 inputs are presented in Table 4. Salinity inputs have no 

spatial or temporal variability (Figure 15). The monthly and annual salinity datasets (Figure 15a) were 

classified over the entire bay (>99%) as optimal habitat. The turbidity inputs (Figure 15b) also had no spatial 

or temporal variability and were classified almost entirely (>90%) as unsuitable. The annual temperature 

dataset (Figure 15c) had no spatial variability and classified the entire bay (98%) as optimal habitat. 

However, the monthly temperature inputs had significant temporal and some spatial variability. Winter 

temperatures (December, January, February) were classified entirely (>88%) as unsuitable habitat. March 

was entirely (99%) classified as moderate habitat as temperatures began to rise. April and May were entirely 

(>99%) optimal habitat. June was found to be less optimal habitat as temperatures began to rise in the 

summer. July was classified as entirely (99%) moderate as temperatures exceeded 30℃. August, September, 

and October temperatures were entirely (99%) classified as optimal habitat. November showed a decline in 

optimal habitat coverage as temperatures began to decline into winter. Depth had the greatest spatial 

variability (Figure 15d), with optimal habitat primarily in the secondary bays and unsuitable habitat in the 

deeper, primary bay. The velocity datasets (Figure 15e) also illustrated some spatial variability. 

 

2.6.3. Inputs for OHSI2 

Statistics for monthly and annual OHSI2 inputs are presented in Table 4. Over the entire bay, the 

salinity SIs had no spatial or temporal variability. Each salinity SI had a score of 0.61 ± 0.00 (average ± 

standard deviation; Figure 16a). Turbidity SIs varied spatially and temporally. The lowest average values 

were found in November (0.15 ± 0.02; Figure 16b), whereas the summer months (June, July, August) had 

the highest averages (0.20 ± 0.02). The annual dataset had an average SI of 0.18 ± 0.02. The temperature 

SIs had spatial and temporal variability (Figure 16c). Monthly average SIs were lowest in the summer and 

highest in winter. July had the lowest monthly average SI value of 0.24 ± 0.01, and February had the highest 

monthly SI of 0.63 ± 0.01. The annual dataset had an average SI of 0.39 ± 0.00. The depth dataset had 

substantial spatial variability, but little temporal variability (Figure 16d). October had the lowest monthly 

average SI (0.06 ± 0.09) and January had the highest monthly average SI (0.10 ± 0.18). The average SI of 

the annual depth dataset was 0.08 ± 0.14. The average SI of the velocity dataset was 0.52 ± 0.35. Velocity 

over Matagorda Bay demonstrated high spatial variability (Figure 16e). 
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2.6.4. Inputs for OHSI3 

Statistics for monthly and annual OHSI3 inputs are presented in Table 9. Over the entire bay, the 

salinity inputs had spatial variability (Figure 17a). Salinity concentrations were lowest near freshwater 

sources and increased toward the primary bay. These datasets had low temporal variability. The lowest 

monthly average was from May (17.57 ± 0.39 psu) and the highest monthly average was from October 

(18.58 ± 0.29 psu). The annual dataset had an average of 18.13 ± 0.24 psu. The turbidity inputs had greater 

spatial and temporal variability (Figure 17b). Turbidity was lowest in the primary bay and highest near 

freshwater sources, as the river inputs are generally much more turbulent than the bay. Monthly averages 

were lowest in the summer months, specifically in June (21.56 ± 1.04 NTU) and greatest in November 

(25.09 ± 1.37 NTU). The annual average turbidity was 22.09 ± 0.26 NTU. The temperature datasets had 

the greatest temporal variability (Figure 17c). Water temperatures were lowest in the winter months 

(December, January, February) and highest in the summer months (June, July, August). February had lowest 

monthly average (10.72 ± 0.40°C) and July had the highest monthly average (31.07 ± 0.50°C). Annual 

average water temperature is 22.52 ± 0.85°C. The depth datasets had significant spatial variability 

(Figure 17d). Temporal variability represents monthly variation of tidal influence. Tidal influence was 

lowest in January and greatest in October. The annual average depth over Matagorda Bay is -2.78 ± 1.37 

m. The water velocity average was low (0.01 ± 0.01 m/s), but illustrated high spatial variability (Figure 

17e). 
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Figure 15: Annual and monthly inputs for (a) salinity, (b) turbidity, (c) temperature, (d) depth, and (e) water 

velocity for OHSI1uw and OHSI1w models.   
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Figure 16: Annual and monthly inputs for (a) salinity, (b) turbidity, (c) temperature, (d) depth, and (e) water 
velocity for OHSI2uw and OHSI2w models.   
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Figure 17: Annual and monthly inputs for (a) salinity, (b) turbidity, (c) temperature, (d) depth, and (e) water 
velocity for OHSI3 models.    
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Table 9: Statistics for inputs used for OHSI1, OHSI2, and OHSI3 models generated over the entire 

Matagorda Bay. Statistical measurements include percent coverage of optimal (Opt. (%)), moderate (Mod. 

(%)), and unsuitable (Unsuit. (%)) conditions for the OHSI1 inputs. Statistics for OHSI2 and OHSI3 inputs 

were quantified through average and standard deviation (Avg. ± Std. Dev.), and minimum (Min.) and 

maximum (Max.) values for SI, and actual inputs, respectively.  

Model 
Parameter Month 

OHSI1 (classes) OHSI2 (SI values) OHSI3 (actual values) 

Opt. (%) Mod. (%) Unsuit. (%) Avg. ± Std.Dev. Min. Max. Avg. ± Std.Dev. Min. Max. 

Salinity 

1 100.00 0.00 0.00 0.61 ± 0.00 0.60 0.61 18.37 ± 0.24 15.40 18.75 

2 100.00 0.00 0.00 0.61 ± 0.00 0.59 0.61 18.40 ± 0.25 14.80 18.79 

3 100.00 0.00 0.00 0.61 ± 0.00 0.59 0.61 18.49 ± 0.21 14.92 18.84 

4 100.00 0.00 0.00 0.61 ± 0.00 0.60 0.61 18.06 ± 0.22 15.05 18.63 

5 100.00 0.00 0.00 0.61 ± 0.00 0.59 0.61 17.57 ± 0.39 14.47 18.68 

6 100.00 0.00 0.00 0.61 ± 0.00 0.59 0.61 17.75 ± 0.32 13.46 18.58 

7 100.00 0.00 0.00 0.61 ± 0.00 0.60 0.61 17.85 ± 0.27 14.45 18.64 

8 100.00 0.00 0.00 0.61 ± 0.00 0.60 0.61 18.30 ± 0.26 14.83 18.66 

9 100.00 0.00 0.00 0.61 ± 0.00 0.59 0.61 18.47 ± 0.26 14.80 18.92 

10 100.00 0.00 0.00 0.61 ± 0.00 0.59 0.61 18.58 ± 0.29 15.01 19.01 

11 100.00 0.00 0.00 0.61 ± 0.00 0.59 0.61 18.01 ± 0.38 14.84 18.65 

12 100.00 0.00 0.00 0.61 ± 0.00 0.59 0.61 18.05 ± 0.36 14.93 18.97 

Ann. 99.41 0.00 0.59 0.61 ± 0.00 0.60 0.61 18.13 ± 0.24 14.59 18.71 

Turbidity 

1 1.05 0.00 98.95 0.17 ± 0.02 0.11 0.42 23.37 ± 1.01 13.38 27.66 

2 1.06 0.00 98.94 0.19 ± 0.01 0.13 0.42 22.24 ± 0.78 13.60 26.96 

3 1.10 0.00 98.90 0.19 ± 0.02 0.12 0.48 22.35 ± 0.98 13.33 26.83 

4 1.10 0.00 98.90 0.19 ± 0.02 0.13 0.53 22.36 ± 0.83 11.77 26.16 

5 1.57 0.00 98.43 0.18 ± 0.02 0.09 0.49 22.81 ± 1.35 12.36 28.27 

6 1.94 0.00 98.06 0.20 ± 0.02 0.13 0.60 21.56 ± 1.04 10.32 26.01 

7 4.20 0.00 95.80 0.20 ± 0.02 0.14 0.48 21.64 ± 1.00 12.82 25.84 

8 1.79 0.00 98.21 0.20 ± 0.02 0.14 0.50 21.51 ± 0.88 12.68 25.06 

9 1.96 0.00 98.04 0.19 ± 0.02 0.13 0.56 21.85 ± 0.91 11.13 26.23 

10 1.27 0.00 98.73 0.19 ± 0.02 0.11 0.49 22.21 ± 0.89 11.50 27.48 

11 0.84 0.00 99.16 0.15 ± 0.02 0.11 0.44 25.09 ± 1.37 12.68 28.97 

12 1.29 0.00 98.71 0.18 ± 0.02 0.10 0.53 23.13 ± 0.96 13.04 27.01 

Ann. 0.93 6.86 92.21 0.18 ± 0.01 0.14 0.46 22.09 ± 0.26 16.80 26.21 

Temperature 

1 0.00 0.06 99.94 0.56 ± 0.02 0.38 0.67 13.52 ± 0.61 9.26 14.84 

2 0.00 0.03 99.96 0.63 ± 0.01 0.42 0.67 10.72 ± 0.40 9.32 14.14 

3 0.25 99.06 0.69 0.46 ± 0.01 0.32 0.66 17.81 ± 0.39 13.17 23.56 

4 99.97 0.03 0.00 0.37 ± 0.01 0.21 0.50 22.18 ± 0.39 19.18 28.06 

5 99.79 0.00 0.21 0.30 ± 0.01 0.26 0.43 26.60 ± 0.39 22.74 28.27 

6 45.41 54.22 0.37 0.25 ± 0.01 0.14 0.32 30.04 ± 0.54 26.10 38.58 

7 2.23 97.59 0.18 0.24 ± 0.01 0.14 0.29 31.07 ± 0.50 27.93 35.31 
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8 94.76 5.22 0.02 0.26 ± 0.01 0.18 0.43 29.28 ± 0.44 26.35 34.67 

9 99.95 0.05 0.00 0.29 ± 0.01 0.19 0.42 27.28 ± 0.34 24.29 29.12 

10 98.89 1.11 0.01 0.37 ± 0.01 0.25 0.66 22.42 ± 0.70 18.85 26.26 

11 16.49 83.49 0.02 0.42 ± 0.01 0.35 0.58 19.71 ± 0.36 16.54 22.77 

12 0.01 11.50 88.49 0.53 ± 0.01 0.42 0.66 14.67 ± 0.36 12.63 16.26 

Ann. 98.15 1.82 0.03 0.39 ± 0.00 0.32 0.45 22.52 ± 0.85 12.01 26.52 

Depth 

1 34.87 24.44 40.69 0.10 ± 0.18 0.00 1.01 -2.65 ± 1.37 -20.97 -0.14 

2 34.50 24.51 40.99 0.09 ± 0.16 0.00 1.01 -2.70 ± 1.37 -21.02 -0.19 

3 33.20 25.62 41.17 0.08 ± 0.15 0.00 0.96 -2.76 ± 1.37 -21.08 -0.25 

4 32.37 26.01 41.62 0.08 ± 0.13 0.00 0.88 -2.82 ± 1.37 -21.14 -0.31 

5 32.23 26.10 41.66 0.08 ± 0.13 0.00 0.86 -2.83 ± 1.37 -21.15 -0.32 

6 32.72 25.93 41.35 0.08 ± 0.14 0.00 0.90 -2.80 ± 1.37 -21.12 -0.29 

7 33.70 25.29 41.01 0.09 ± 0.16 0.00 1.00 -2.72 ± 1.37 -21.04 -0.21 

8 33.20 25.62 41.17 0.08 ± 0.15 0.00 0.96 -2.76 ± 1.37 -21.08 -0.25 

9 32.51 25.46 42.02 0.07 ± 0.11 0.00 0.73 -2.92 ± 1.37 -21.24 -0.41 

10 31.89 25.78 42.33 0.06 ± 0.09 0.00 0.62 -3.00 ± 1.37 -21.32 -0.49 

11 31.90 26.30 41.79 0.07 ± 0.12 0.00 0.81 -2.86 ± 1.37 -21.18 -0.35 

12 33.82 25.23 40.95 0.09 ± 0.16 0.00 1.00 -2.71 ± 1.37 -21.03 -0.20 

Ann. 31.31 19.95 48.74 0.08 ± 0.14 0.00 0.89 -2.78 ± 1.37 -25.09 -0.28 

Velocity 24.70 72.37 2.93 0.52 ± 0.35 0.00 1.20 0.01 ± 0.01 0.00 0.07 

 

 OHSI2 and OHSI3 models were constructed using the oyster total live count dataset as model 

targets. Inputs and target datasets were extracted at the TPWD sample locations shown in Figure 12b. Table 

10 displays statistics for the input and target data at sample locations. Oyster samples generally occurred 

over locations of existing reefs. Live count varied significantly. No live oysters were found at locations 

throughout the primary bay. All samples taken at Half Moon Reef had zero total live count. The highest live 

counts (>100 oysters) were sampled at reefs in Lavaca Bay and Tres Palacios Bay. Oyster samples were 

taken at depths <3 m, where average salinity is moderate (17 psu), the average turbidity is low (22 NTU), 

temperature is warm (21℃), and water velocity is slow (0.01 m/s).  

 

Table 10: Statistics for model OHSI 2 and OHSI3 inputs and targets (e.g., total live counts) extracted at 
the TPWD sample locations shown in Figure 12b. Statistical measures include average (Avg.), standard 
deviation (Std. Dev.), minimum value (Min.), and maximum value (Max.). 

Statistical measure Live Count Salinity Turbidity Temperature Velocity Depth 
Average  9.77 17.03 22.52 20.95 0.01 1.31 
Std. Dev. 19.34 1.61 3.22 7.98 0.01 0.48 
Min. 0.00 11.79 11.35 0.07 0.00 0.14 
Max. 213.00 19.27 37.40 36.76 0.03 3.03 
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2.6.5. OHSI1 Outputs  

 Table 11 shows statistics for habitat percent coverage generated by OHSI1 models over Matagorda 

Bay, on both a monthly and an annual basis. Figure 18 shows the spatial distributions of theses habitats. 

The OHSI1uw model classified few regions (<1%) as optimal. Optimal habitat is identified in regions near 

freshwater sources where water is shallow, and velocity is high. Spatial variability in OHSI1uw scores follow 

the trajectory of freshwater flow, specifically from the Colorado River in the eastern arm, classifying these 

regions as moderate. Unsuitable habitats are found in secondary bays in the winter. Despite optimal 

conditions of other parameters, such as depth, water velocity, and salinity, the OHSI1uw model classifies 

these regions as unsuitable due to the cold water temperatures. The OHSI1uw model classified the primary 

bay as unsuitable habitat in the monthly and annual scores. The OHSI1w classified most habitat as optimal 

or moderate. Late spring (April and May) and early fall (September and October) had the greatest optimal 

habitat coverage (>90%). The other months had high optimal habitat coverage (>50%), which was generally 

concentrated in secondary bays and the eastern arm. The primary bay was classified as moderate habitat in 

the months with spatial variability. This model had low (<2%) unsuitable habitat coverage. 

.  

 

Table 11: Habitat percent coverage for the monthly and annual datasets, produced by the OHSI1uw and 
the OHSI1w models. 

Month 
OHSI1uw OHSI1w 

Opt. 
(%) 

Mod. 
(%) 

Unsuit. 
(%) 

Opt. 
(%) 

Mod. 
(%) 

Unsuit. 
(%) 

1 0.00 13.76 86.24 51.77 49.97 0.60 
2 0.00 13.50 86.50 49.00 50.34 0.66 
3 0.00 43.01 56.99 59.55 39.81 0.64 
4 0.08 60.63 39.28 93.80 5.63 0.57 
5 0.11 60.86 39.04 93.79 5.56 0.65 
6 0.01 50.01 49.97 79.24 20.14 0.62 
7 0.00 45.90 54.09 61.66 37.76 0.58 
8 0.02 60.06 39.91 93.24 6.26 0.49 
9 0.13 60.82 39.05 93.90 5.47 0.63 

10 0.16 60.22 39.63 93.94 5.50 0.57 
11 0.00 44.36 55.63 65.44 32.96 1.60 
12 0.00 16.42 83.58 51.65 47.92 0.43 

Annual 0.12 65.36 34.52 98.33 1.67 0.00 
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Figure 18: Monthly (a)-(j) and annual (k) scores produced by the OHSI1uw and OHSI1w models. Red 

indicates unsuitable habitat, yellow moderate habitat, and green optimal habitat.  

 

 Figure 19 illustrates the spatial correlation between the total live count (Figure 19a, 19d), total spat 

count (Figure 19b, 19e), and total dead count (Figure 19c, 19f), as well as the annual OHSI1uw and OHSI1w 

scores. All samples, including total live, dead, and spat were taken in locations identified as moderate and 

optimal habitat by OHSI1uw and OHSI1w. Live and spat count were greatest in secondary bays, specifically 

in Lavaca and Tres Palacios Bay. Year-round moderate conditions are identified by OHSI1uw at the explicit 

locations with high live and spat count. Lowest live and spat count in these secondary bays are in locations 

identified as unsuitable during the winter months. Total dead count was highest in Lavaca Bay, where live 

and spat counts are high. 
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Figure 19: Oyster samples (blue), including total live (a), (d), total spat (b), (e), and total dead (c), (f) over 
the annual score maps produced by OHSI1uw (a)–(c) and OHSI1w (d)–(f), where red indicates unsuitable 
habitat, yellow is moderate habitat, and green is unsuitable habitat.

2.6.6. OHSI2 Outputs

Coefficients for the Max-Bin regression analysis are displayed in Table 12. Figure 20 shows

visualizations of each fitted Max-Bin regression model. Coefficients extracted for the salinity model were 

a = 0.90, b = 1.08, and c = 13.43 psu. The optimal salinity concentration was ~20 psu. This model found 

that total live declined at salinities less than 20 psu and greater than 20 psu; however, lower salinities (<10 

psu) had more detrimental effects on the live counts. Coefficients extracted for the turbidity model were 

a = 0.79, b = 0.19, and c = 21.33 NTU. This model found the optimal turbidity concentration to be ~20 

NTU, where low (<15 NTU) and high (>32 NTU) turbidities have similar effects on live counts.

Coefficients extracted for the temperature model were a = 0.67, b = 0.46, and c = 16.00℃. The optimal 

temperature depicted by this model was 10℃. The relationship between normalized live and temperature 

steeply declines in temperatures <7℃. Temperatures greater than 10℃ experience only a slight decline in 

normalized total live. Coefficients extracted for the water depth were a = 1.00, b = 0.10, and c= -1.85 m. 

The optimal depth was ~1.5 m, and total live experienced significant drops in depths >3 m and <1 m. 

Coefficients generated for the velocity model were a = 1.20, b = 0.84, and c = 0.03 m/s. Total live increased 

when water velocity increased. 
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Table 12: Model coefficients for the Max-Bin regression models between input parameters and total live 
count. 

Parameter 
Coefficient 

a b c 
Salinity 0.90 1.08 13.43 
Turbidity 0.79 0.19 21.33 
Temperature 0.67 0.46 16.00 
Depth 1.00 0.10 -1.85 
Velocity 1.20 0.84 0.03 

 

 

Figure 20: Fitted Max-Bin regression models, depicting the relationship between physical parameters 

(salinity, turbidity, temperature, depth, and velocity) and normalized total live counts.   

 

Table 13 shows statistics for habitat percent coverage generated by OHSI2 models over Matagorda 

Bay, on both a monthly and an annual basis. These models identified spatially diverse habitat scores and 

identified similar spatial and temporal trends (Figure 21). OHSI2uw identified the most optimal habitat in 

the winter. The summer months and early fall had the greatest unsuitable habitat coverage. Optimal habitat 

was generally identified near freshwater sources, along the trajectory of flow. These regions are generally 

shallow in depth, with moderate salinity, higher turbidity, and high flow. Unsuitable habitat is located in the 
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primary bay, where water is deeper, flow is slower, and salinity is higher. Unsuitable habitat is also located 

in the secondary bays when temperatures are warm (spring, summer). 

OHSI2w identified greater coverage of optimal habitat than OHSI2uw. OHSI2w identified the 

greatest coverage of optimal habitat in the winter months, specifically in secondary bays and along the 

boundaries of the primary bay. These areas identified as optimal are generally shallower regions, where 

flow is high, and salinity is low due to influence from river discharges. Unsuitable habitat coverage was 

greatest during the summer months and was primarily found throughout the secondary bays and in the 

center of the primary bay. The secondary bays are identified as unsuitable during the summer as 

temperatures rise beyond oyster tolerance, according to the Max-Bin model. The primary bay is unsuitable 

as this area is deeper, has less flow, and experiences temperature rises during the summer. 

  

 

Table 13: Monthly and annual habitat coverage produced by the OHSI2 models (OHSI2uw and OHSI2w), 

which identified optimal, moderate, and unsuitable habitat.  

Month 
OHSI2uw OHSI2w 

Opt. 
(%) 

Mod. 
(%) 

Unsuit. 
(%) 

Opt. 
(%) 

Mod. 
(%) 

Unsuit. 
(%) 

1 44.45 41.67 13.88 71.71 28.29 0.00 
2 51.58 42.63 5.79 85.30 14.70 0.00 
3 37.34 37.04 25.62 54.50 43.07 2.43 
4 30.98 32.49 36.53 43.41 44.78 11.80 
5 26.74 27.03 46.23 35.59 39.73 24.67 
6 25.64 26.13 48.23 33.54 36.01 30.45 
7 25.64 25.55 48.81 33.68 34.63 31.69 
8 26.44 26.15 47.40 34.61 37.23 28.16 
9 26.02 27.54 46.45 34.57 38.83 26.60 

10 29.22 32.32 38.46 40.50 45.40 14.10 
11 31.48 33.75 34.77 45.67 45.64 8.69 
12 41.91 40.91 17.18 65.63 33.98 0.39 

Ann. 32.27 33.32 34.42 46.05 53.95 0.00 
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Figure 21: Monthly (a) – (j) and annual (k) scores produced by the OHSI2uw and OHSI2w models. Red 
indicates unsuitable habitat, yellow indicates moderate, and green is optimal habitat. 

 

Figure 22 illustrates the spatial correlation between the total live count (Figure 22a, 22d), total spat 

count (Figure 22b, 22e), and total dead count (Figure 22c, 22f) and the annual OHSI2uw and OHSI2w scores. 

Oyster samples were collected over a range of habitat qualities, as identified by these models. Live and spat 

counts over optimal habitat identified by OHSI2uw were generally higher than those located over moderate 

and unsuitable habitat. Dead count was greatest in Lavaca Bay where monthly OHSI2uw maps illustrate 

year-round unsuitable conditions. For the OHSI2w, live and spat count were generally greatest in locations 

that are year-round optimal habitat. However, both live and spat count had samples of high count and poor 

habitat quality while some locations of low oyster count were present in optimal habitat quality. Dead count 

is greatest in locations where monthly maps illustrate unsuitable conditions, specifically in the summer and 

fall. 
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Figure 22: Oyster samples (blue), including total live (a), (d), total spat (b), ©, and total dead (c), (f) over 

the annual score maps produced by OHSI2uw (a)–(c) and OHSI2w (d)–(f), where red indicates unsuitable 

habitat, yellow is moderate habitat, and green is unsuitable habitat.

2.6.7. OHSI3 Outputs

Figure 23 and Table 14 present the statistical measures for the optimal ML models used to generate the

OHSI3. Among the diverse ML families, a trend of closely competitive performance emerges. However, 

DRF stands out as the most effective family for salinity simulations. The optimal DRF achieved a training 

performance of NRMSE: 0.53 ± 0.04, r: 0.92 ± 0.03, NSE: 0.72 ± 0.05, and a testing performance of 

NRMSE: 0.85 ± 0.06, r: 0.56 ± 0.10, NSE: 0.27 ± 0.12. The relative importance for input variables were 

37% for depth, 23% for salinity, 17% for turbidity, 16% for temperature, and 7% for velocity. Following 

DRF closely in performance, GBM ranks as the second-best performing family. The optimal GBM model, 

showcased training performance metrics of NRMSE: 0.68 ± 0.19, r: 0.79 ± 0.19, NSE: 0.53 ± 0.24, and 

testing performance of NRMSE: 0.87 ± 0.05, r: 0.54 ± 0.10. DNN presents a slightly weaker performance, 

being the second-least effective family. The optimal DNN model exhibited a training performance of 

NRMSE: 0.84 ± 0.17, r: 0.58 ± 0.23, NSE: 0.29 ± 0.26, and testing performance of NRMSE: 0.88 ± 0.09, 

r: 0.48 ± 0.12, NSE: 0.22 ± 0.21. Figure 24 presents scatterplots illustrating observed and modeled total 

live counts generated for the optimal model in each ML family during both training and testing phases. As 

depicted in Figure 24, the DRF model is performing well during training compared to other models.

The optimal DRF model was further implemented to predict live count over Matagorda Bay. Table 15

presents statistics measures of the monthly and annual live counts as well as habitat coverage depicted for 
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the monthly and annual datasets. Average total live count predicted by OHSI3 was highest in July (13.01 ± 

3.65). This month had that highest optimal habitat coverage (Figure 25e). The low average total live count 

was 7.18 ± 2.20 in November. This month also had the lowest optimal habitat and highest unsuitable habitat 

coverage (Figure 25i). The OHSI3-generated maps (Figure 25) were more spatially and temporally complex 

than OHSI1 and OHSI2 maps. This model identified optimal regions in many locations throughout the bay. 

Optimal habitat was concentrated in secondary bays and in scattered regions throughout the primary bay. 

Regions of bay in contact with river mouths were identified as unsuitable. The deep shipping channel was 

generally identified as unsuitable habitat. Unsuitable habitat dominated (>50%) April (Figure 25d), May 

(Figure 25e), and November (Figure 25i) suitability maps, as the primary bay becomes unsuitable. 

 

Figure 23: Performance measures for the optimal models produced from various ML model families (DRF, 

GBM, DNN) for the (a) training and (b) testing phases.  
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Table 14: Training and testing performance (average ± standard deviation) for the optimal model in each 
ML-based algorithm.

ML Algorithm Statistical Measure Training Phase Testing Phase

DRF
NRMSE 0.53 ± 0.04 0.85 ± 0.06

r 0.92 ± 0.03 0.56 ± 0.10
NSE 0.72 ± 0.05 0.27 ± 0.12

GBM
NRMSE 0.68 ± 0.19 0.87 ± 0.05

r 0.79 ± 0.19 0.54 ± 0.10
NSE 0.53 ± 0.24 0.24 ± 0.11

DNN
NRMSE 0.84 ± 0.17 0.88 ± 0.09

r 0.58 ± 0.23 0.48 ± 0.12
NSE 0.29 ± 0.26 0.22 ± 0.21

Figure 24: Predicted and actual total live count produced by the optimal models displayed in Table 14. Red 
lines indicate a 1:1 relationship.



68 
 

Table 15: Statistics for monthly and annual total live counts and scores predicted by the OHSI3 over the 
entire bay. 

Month Avg. ± Std. Dev. Min. Max. Opt. (%) Mod. (%) Unsuit. (%) 
1 9.58 ± 3.52 3.28 29.27 48.93 13.82 37.24 
2 9.34 ± 3.06 3.59 28.47 45.64 13.95 40.40 
3 9.56 ± 3.11 3.25 34.77 53.31 13.80 32.89 
4 8.12 ± 2.63 2.84 25.60 26.83 14.36 58.81 
5 8.22 ± 2.69 2.39 26.37 29.13 12.32 58.55 
6 10.11 ± 2.61 2.75 28.28 70.47 11.43 18.09 
7 13.01 ± 3.65 2.79 29.12 85.42 2.90 11.68 
8 9.48 ± 2.63 2.86 26.52 54.71 15.11 30.17 
9 9.63 ± 3.36 2.97 32.53 47.27 19.07 33.67 

10 8.98 ± 3.08 3.00 36.46 33.00 23.24 43.76 
11 7.18 ± 2.20 2.97 28.99 13.89 6.34 79.76 
12 9.40 ± 3.63 3.18 43.53 45.05 12.45 42.49 

Ann. 8.61 2.78 29.83 31.97 33.28 34.75 
 

 

Figure 25: Monthly and annual total live counts and scores produced by the OHSI3 model. 
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2.7. Discussion 

 The HSI models quantify oyster habitat quality and could assist restoration efforts by providing 

essential tools for informed site selection. In this study, five OHSI models were developed for Matagorda 

Bay, primarily focusing on water quality, on both a monthly and an annual basis (2018–2023), using inputs 

with high spatial resolution (100 m). Input data for these models include salinity, turbidity, temperature, 

water depth, and velocity. Most OHSI models exhibited spatial and temporal variability. Optimal oyster 

habitat was generally observed in shallower regions, near freshwater sources with high water velocity. 

Unsuitable habitat was typically identified in the primary bay, where water depths are greater, water velocity 

is slower, and the influence from freshwater input is less significant. Each model highlighted a different 

season with maximum coverage of optimal conditions. OHSI1 indicated that spring and fall months were 

optimal for oysters, while winter was deemed unsuitable. OHSI2 identified winter months as optimal and 

deemed summer unsuitable. OHSI3 found the most suitable conditions in summer and determined that 

spring and late fall were unsuitable. 

Remote-sensing datasets have proven to be particularly useful for analyzing spatial and temporal 

trends of biophysical parameters used to create OHSI models. These datasets are publicly available and 

exhibit high spatial resolution. However, the quality of the generated OHSI models is significantly 

controlled by the quality of these datasets.  For example, the ECOSTRESS-derived temperature data used 

in this study demonstrated high correlation to in-situ temperature observations (r: 0.84). However, the 

salinity and turbidity datasets derived from Landsat-8 data show a relatively limited quality (salinity r: 0.49, 

turbidity r: 0.79) for several outstanding reasons. The quality of the salinity and turbidity data is function 

of the ML model performance used to retrieve them from Landsat-8 data. Large in-situ datasets are required 

to establish a robust ML model and significant and accurate relationships between in-situ salinity and 

turbidity observations and Landsat-8 surface reflectance data. Generating ML models from small datasets 

(salinity n: 478, turbidity n: 173) could lead to obvious bias and low model performance. The optimal ML 

models for salinity and turbidity show modest performance during the testing phase (salinity: NRMSE: 0.87 

± 0.06, r: 0.49 ± 0.09, NSE: 0.23 ± 0.12; turbidity: NRMSE: 0.63 ± 0.11, r: 0.79 ± 0.11, NSE: 0.60 ± 0.20). 

These modest performances affected the model generalization when applied to retrieve monthly salinity 

and turbidity data over Matagorda Bay. The generated salinity and turbidity encompass a narrow range of 

spatial variability. For example, the salinity model predicted only small ranges and events of low (<10 psu) 

and high (>20 psu) salinities could not correctly be predicted by that model. The turbidity model could only 

identify lower turbidities (<100 NTU). The model successfully failed to predict higher turbidities. Improved 

estimates of salinity and turbidity could be achieved by increasing the number of in-situ observations to 

build robust ML models, as well as by refining the model hyperparameters. 



70 
 

The performance of the OHSI models also depends on the number of model input parameters. The 

generated OHSI models are quite simple given the fact that oyster habitat scores cannot be adequately 

depicted through a select few physical parameters. Nevertheless, these OHSI models are useful for 

indicating regions with a likelihood of success based on long-term (2018–2023) water quality conditions. 

The OHSI models produced in this study focused only on salinity, turbidity, temperature, depth, and water 

velocity to depict oyster habitat suitability. OHSI produced in other studies included alternative or 

additional inputs. Substrate (Cake, 1983; Soniat & Brody, 1988; Theuerkauf & Lipcius, 2016) and 

chlorophyll-a (Cho et al., 2012; Snyder et al., 2017) are frequently used, as substrate and food availability 

are essential factors that mark habitat as optimal quality. Efforts were made to incorporate these parameters 

into this study’s OHSI models; however, they were not considered due to lack of available data over 

Matagorda Bay. No substrate data were available. However, depth was selected to serve as a proxy for 

substrate. In Section I, chlorophyll-a data were retrieved Landsat-8 images using empirical models. 

However, these models were based on limited number of field observations (n = 17), which hinders their 

generalization. OHSI model improvements may be made by incorporating additional physical parameters, 

such as substrate type and chlorophyll-a, because these parameters are critical to oyster habitat suitability. 

The performance of the OHSI models also depends on the model structure. OHSI1 is a simple 

overlay model, which might not be able to capture the complex relationship between the input parameters 

and the oyster habitat (Theuerkauf & Lipcius, 2016). The performance of this model is also a function of 

the threshold values used to define optimal, moderate, and unsuitable classes for each model input. These 

thresholds influence the timing of the maximum coverage of optimal and unsuitable habitat conditions over 

the entire bay. In addition, assigning weights to different inputs based on previous studies might be 

subjective and could introduce bias into the final habitat scores. On the other hand, many of the OHSI1 

scores demonstrated little to no spatial variability. Small spatial variability could result from the input 

datasets being entirely classified as a single class. For example, the salinity inputs were nearly exclusively 

classified as optimal habitat over 99.41–100% of the bay. Turbidity inputs were almost entirely classified 

as unsuitable habitat over more than 90% of the bay. OHSI1uw and OHSIw scores differed greatly in the 

habitats they identified. OHSI1uw primarily depicted the bay as unsuitable habitat, with patches of moderate 

habitat. On the other hand, OHSIw depicted high percentages of optimal habitat, with many OHSI1w maps 

showing entirely optimal habitat. The nearly constant optimal habitat identified by this model is due to the 

heavy weight of the salinity inputs, which are classified entirely as optimal. This model only predicted some 

moderate habitat in half of the monthly images. Despite these differences between OHSI1uw and OHSI1w, 

both models depicted higher quality habitat, either optimal or moderate, in secondary bays, near freshwater 

sources, and in areas of high flow velocity. Furthermore, both models identified lower quality habitat, either 

moderate or poor, in the primary bay where salinity is generally higher, water is deeper, and flow is lower. 
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The OHSI2 is a more complex approach to oyster habitat modeling, as it transformed the values of 

the input physical parameters (e.g., salinity, turbidity, temperature, water depth, and water velocity) into a 

SI. SI values established through the Max-Bin regression method reflect those published in previous 

literature (Turner et al., 2016). The model coefficients (a, b, and c) were generated from annual data and 

applied to monthly averages; therefore, this model limits monthly variability. Moreover, the model 

coefficients are function of the number of data points as well as the mathematical fitting function used to 

generate them. The higher the number of data points (n = 567), the more robust these parameters would be. 

More importantly, the values of these coefficients are significantly influenced by the spatial variability of 

the locations from which they were extracted (e.g., Figure 12b). Velocity, for example, showed small 

variability, only depicting velocity values at oyster sample locations through four speeds. The regression 

model struggled to depict a strong relationship between this velocity and the oyster total live count. The 

regression model would benefit from the addition of velocity observations that create more spatial 

variability. In addition, the performance of the OHSI2 model is also a function of the threshold values used 

to define optimal, moderate, and unsuitable scores. These thresholds influence the timing of the maximum 

coverage of optimal and unsuitable habitat conditions over the entire bay. OHSI2 models varied in depicted 

habitat quality. OHSI2uw identified a larger range of unsuitable, moderate, and optimal conditions. A greater 

coverage of optimal habitat was depicted by the OHSI2w model. 

The OHSI3 model generated the most spatially complex habitat scores. These models are inherently 

less biased, because they do not rely on theories or relationships established in previous literature. They 

could be used to directly predict oyster abundance indicators such as live, spat, or dead counts. These ML 

models leverage advanced computational techniques to integrate complex environmental variables, identify 

suitable habitat areas, and inform targeted conservation strategies. Their ability to handle intricate 

relationships and adapt to evolving datasets makes them indispensable tools in promoting the sustainability 

and resilience of oyster populations and coastal ecosystems. However, these models require large datasets 

to adequately comprehend the intricate relationship between oysters and their environment. This is likely 

why many studies have not employed a similar ML-based approach to OHSI. ML provides a unique 

approach to modeling OHSI, as these algorithms can analyze complex, nonlinear relationships. However, 

model performance from the ML families could be enhanced by optimizing the model hyperparameters, 

using a larger dataset, and removing extreme outliers. Similar to OHSI2 models, the performance of the 

OHSI3 model is also a function of the threshold values used to define optimal, moderate, and unsuitable 

scores. These thresholds influence the timing of the maximum coverage of optimal and unsuitable habitat 

conditions over the entire bay. The DRF model has been highlighted for their exceptional performance in 

modeling total live counts. This algorithm is non-parametric, meaning the model does not make unjustified 

assumptions (Moral-García et al., 2020). Many habitat modeling studies have underscored the DRF as the 
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best method to depicting habitat quality from select parameters. However, DNN and GBM presented 

performance competitive as well. GBM is a linear model, however, was the second highest performing 

family. In addition, this model is non-parametric (Moral-García et al., 2020), which likely contributes to 

the similar training and testing performance between the optimal DRF and GBM models. The DNN family 

produced the OHSI model with the poorest training and testing performance. This family is considered 

much more powerful than other ML families due to its learning capabilities (Christin et al., 2019). The DRF 

and DNN families have been highlighted for their usefulness in ecological modeling (Christin et al., 2019; 

Simon et al., 2023). 

Oyster habitats are influenced by a wide range of physical parameters. This study contributes to current 

methodologies for modeling OHSI by analyzing modeling approaches frequently used in OHSI studies and 

proposing a new method for modeling OHSI based on ML. These OHSI models are useful for identifying 

regions with a likelihood of success based on the parameters considered. The OHSI scores produced in this 

study indicate regions of greater and lesser likelihood of restoration success. High OHSI scores at specific 

locations indicate areas with long-term suitable water quality, while low OHSI scores depict areas with 

conditions unsuitable for oysters in the long term. The maps produced by this study can be used to identify 

appropriate sites for restoration and to select suitable sites effectively. 

 

2.8. Conclusion 

 OHSI models provide insight on habitat quality and may greatly aid oyster restoration efforts. 

Various approaches have been made to simulate habitat quality for oysters and a wide range of 

environmental parameters have been used to depict habitat quality. This study generated and validated five 

OHSI models over Matagorda Bay, utilizing salinity, turbidity, temperature, depth, and water velocity as 

model parameters. The produced models depicted unsuitable, moderate, and optimal habitat in terms of 

water quality.  

 Each OHSI model depicted different seasons as optimal and unsuitable. OHSI1 models identified 

the greatest optimal habitat coverage in the spring and fall, while winter had the greatest unsuitable habitat 

coverage. OHSI2 identified winter months as optimal and deemed summer unsuitable. OHSI3 found the 

highest optimal habitat coverage in summer and determined that spring and late fall were unsuitable. 

Despite discrepancies between optimal and unsuitable months, models generally depicted shallower regions 

near freshwater sources with high water velocity as optimal habitat for oysters. The primary bay was 

generally depicted as unsuitable, as this area is deeper with slower water velocities and less influence from 

freshwater sources.  
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Our methodology offers a point of reference, a structured framework, and valuable insights for 

modeling OHSI. Each model generated in this study provides unique and insightful details about habitat 

quality in terms of water quality. The developed approach serves as a guide to enhance monitoring 

procedures for ecological modeling.  
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Appendix (1): 

Photos taken at the AGU conference and during fieldwork 

 

 

Figure 1: Graduate student Meghan Bygate attending the Fall 2022 American Geophysical Union (AGU) conference. 

 



 

Figure 2: Graduate student presenting preliminary results at AGU. 



 

Figure 3: Collection of chlorophyll-a samples in Matagorda Bay. 



 

Figure 4: Nutrient sample collection. 



 

Figure 5: Equipment used to collect nutrient samples. 



 

Figure 6: Collected nutrient samples. 

 

 



 

Figure 7: Collecting salinity and temperature observations using a Yellow Springs Instrument (YSI). 


