

UPPER COAST Dine & Discuss Living Shorelines

- Welcome & Introductions
- What is a living shoreline?
- Tools & Resources
- Permitting
- Success Stories
- Q&A

A GUIDE TO LIVING SHORELINES IN TEXAS

21 ALLEN

ENGINEERING AND SCIENCE

CONTENTS

SECTION 1:	INTRODUCTION TO LIVING SHORELINES	1
SECTION 2:	INSTALLING A LIVING SHORELINE: A STEP-BY-STEP GUIDE	6
SECTION 3:	LIVING SHORELINE CASE STUDIES	29
SECTION 4:	PERMITTING A LIVING SHORELINE	42
SECTION 5:	LIVING SHORELINE PLANTING GUIDE	50

APPENDIX A: HARTE RESEARCH INSTITUTE MODEL DETAIL	55
APPENDIX B: VISUAL SITE ASSESSMENT WORKSHEET	56
APPENDIX C: SOURCES CITED AND OTHER RESOURCES	57
APPENDIX D: FUNDING OPPORTUNITIES	58
APPENDIX E: GLOSSARY OF TERMS	59

Corpus Christi Bay. Photo: Texas General Land Office

A GUIDE TO LIVING SHORELINES IN TEXAS / SEPTEMBER 2020 /

What is a "Living" Shoreline?

A shoreline management option that provides erosion control, while working with nature to restore, create, and/or protect valuable habitat.

Port Aransas

Texas coast is eroding ~ 4 feet per year (GLO)

Baffin Bay

Corpus Christi

Copano Bay

Hard Stabilization

Living Shoreline

Revetments

Bulkheads

15-20 year Lifespan

Erosion on adjacent properties Structure degradation over time

Habitat loss Not adaptable to SLR

Hidden maintenance costs...

Absorb wave energy
Restore land by trapping sediments
Allow natural coastal processes to take place
Filter pollutants from runoff
Create/maintain vital habitat fish and shellfish
Provide nesting and foraging areas for birds
Enhance long-term coastal resiliency

Jacowsky Skywesky

Living Shorelines vs. Hard Structures

BENEFITS	LIVING SHORELINES	HARD STRUCTURES
Reduce shoreline erosion	✓	~
Deflect wave energy	\checkmark	\checkmark
Absorb wave energy	\checkmark	\checkmark
Minimal maintenance long term	\checkmark	
Reduce storm surge and flood waters	\checkmark	\checkmark
Adapt to possible sea level rise	\checkmark	
Increase recreational opportunities (fishing, wildlife viewing)	\checkmark	
More potential for beach creation	\checkmark	
Improve water quality	\checkmark	
Maintain ecosystem functions (nutrient cycling, animal and plant habitat)	\checkmark	
Create habitat for terrestrial and aquatic species	\checkmark	
Enhance property aesthetics	\checkmark	
Maintain the natural land/water connection	\checkmark	Page 4

Living Shorelines vs. Hard Structures

BENEFITS	LIVING SHORELINES	HARD STRUCTURES
Reduce shoreline erosion	✓	×
Deflect wave energy	✓	~
Absorb wave energy	✓	✓
Minimal maintenance long term	✓	
Reduce storm surge and flood waters	✓	× /
Adapt to possible sea level rise	✓	
Increase recreational opportunities (fishing, wildlife viewing)	✓	
More potential for beach creation	✓	
Improve water quality	✓	
Maintain ecosystem functions (nutrient cycling, animal and plant habitat)	✓	
Create habitat for terrestrial and aquatic species	✓	
Enhance property aesthetics	×	
Maintain the natural land/water connection	×	Page 4

Types of Living Shorelines in Texas

One size does not fit all...

SOFT Stabilization

Non-structural

 Usually involve planting marsh grass along the existing shoreline

BEFORE

HYBRID Stabilization

 Use hard features for additional erosion control

 Incorporate materials used in "soft" technique

Low-Profile Breakwaters

High-Profile Breakwaters

RETROFIT Stabilization

 Existing hard structure such as a bulkhead or revetment, paired with soft or hybrid stabilization

<u>121</u> Living Shorelines in Texas

COUNTY	PROJECTS
Galveston	49
Chambers	13
Nueces	12
Harris	10
Calhoun	9
Aransas	8
Matagorda	5
Refugio	4
Brazoria	3
Cameron	2
Jackson	2
Orange	2
Kleberg	1
San Patricio	1
TOTAL	121

SHORELIN		ELINE	TYPE SLOPE		EROSION RATE		WAVE ENERGY		WATER DEPTH		SALINITY		ſY						
CATEGORY	OPTION	EXISTING BULKHEAD	MARSH	BEACH SAND/ SHELL HASH	NOM	MODERATE	HIGH	LOW	MODERATE	HIGH	LOW	MODERATE	HIGH	SHALLOW	MODERATE	DEEP	FRESHWATER	BRACKISH	SALT
FT ZATION	Marsh Vegetation Plantings	x	\checkmark	•	\checkmark	•	•	\checkmark	•	x	~	\checkmark	x	~	•	x	~	√	√
SO STABILI	Coir Logs	x	\checkmark	~	\checkmark	\checkmark	•	~	х	x	\checkmark	x	x	~	x	x	~	~	•
	Submerged Oyster Shell Beds	•	\checkmark	~	\checkmark	~	~	~	~	•	~	~	x	~	•	x	x	~	•
NO	Reef Balls	•	~	~	~	~	~	~	~	•	~	~	~	\checkmark	\checkmark	x	•	~	•
HYBRID	Articulated Mats or Blocks with Marsh Plantings	x	\checkmark	~	\checkmark	~	•	~	~	~	~	~	•	~	•	x	~	~	~
STA	Breakwater with Marsh Plantings	~	\checkmark	•	\checkmark	\checkmark	~	•	~	~	•	~	~	~	~	~	~	\checkmark	~
	Riprap with Marsh Plantings	~	~	•	\checkmark	•	•	•	~	x	•	•	x	~	•	x	~	~	✓
v	Best Management Stra	ategy																	
	Potential Management	t Strate	gy																
x Generally Not Recommended			1															Page	e21

Tools & Resources

Living Shoreline Site Suitability Model

Rhiannon Bezore*, James Gibeaut, Michelle Culver, Marissa Dotson

Harte Research Institute for Gulf of Mexico Studies Texas A&M University – Corpus Christi

This project is funded, in part, by a Texas Coastal Management Program Grant approved by the Texas Land Commissioner pursuant to National Oceanic and Atmospheric Administration Award No. NA19NOS419010

Goal: Create model that uses geospatial data to identify :

- What areas are suitable for a living shoreline?
- If suitable, what kind of shoreline technique should be used?

Input	-> Output
 Shoreline type Beach width Water depth Nearshore slope Presence of vegetation Erosion rate Exposure to wind and	 Soft stabilization Hybrid
waves Distance to nearest	stabilization Retrofit: Soft Retrofit: Hybrid Stop and seek
channel	expert advice

HOW GREEN OR GRAY SHOULD YOUR SHORELINE SOLUTION BE?

GREEN - SOFTER TECHNIQUES

GRAY - HARDER TECHNIQUES

Living Shorelines

VEGETATION ONLY -

Provides a buffer to upland areas and breaks small waves. Suitable only for low wave energy environments.

EDGING -Added structure holds the toe of existing or vegetated slope in place.

SILLS -Parallel to existing or vegetated shoreline, reduces wave energy, and prevents erosion. Suitable for most areas except high wave energy environments.

BREAKWATER -

(vegetation optional) - Offshore structures intended to break waves, reducing the force of wave action, and encourage sediment pre-existing accretion. Suitable for most areas.

Coastal Structures

REVETMENT -

Lays over the slope of the shoreline and protects it from erosion and waves. Suitable for sites with hardened shoreline structures. Retrofit

BULKHEAD -Vertical wall parallel to the shoreline intended to hold soil in place. Suitable for areas highly vulnerable to storm surge and wave forces.

Soft Stabilization

Hybrid Stabilization

Factor	Data Source	Range
Bathymetry	USACE	Shallow Deep
Relative Exposure Index	NOAA Wind gauges; USGS Fetch Model	Low Moderate High
Shoreline Type	HRI mapped Environmental Sensitivity Index	Beach or Marsh Present Scarp Present Armoring Present
Shoreline Change Rate	BEG Historic Shorelines	Stable to Accretion Low Moderate High
Proximity to Channel	HRI Channel Polygon	Large or small channel? Border Near Far

Factor	Data Source	Range
Bathymetry	ADCIRC Mesh	Shallow Deep
Relative Exposure Index	NOAA Wind gauges; USGS Fetch Model	Low Moderate High
Shoreline Type	HRI mapped Environmental Sensitivity Index	Beach or Marsh Present Scarp Present Armoring Present
Shoreline Change Rate	BEG Historic Shorelines	Stable to Accretion Low Moderate High
Proximity to Channel	HRI Channel Polygon	Large or small channel? Border Near Far

• 10 years of wind data

۰

- Calculated average wind speed every 22.5 degrees
- Summed products of fetch and wind energy in each direction

Relative Exposure Index

0	5	10				20	Miles	
	1		1	1	1			

Factor	Data Source	Range
Bathymetry	ADCIRC Mesh	Shallow Deep
Relative Exposure Index	NOAA Wind gauges; USGS Fetch Model	Low Moderate High
Shoreline Type	HRI mapped Environmental Sensitivity Index	Beach or Marsh Present Scarp Present Armoring Present
Shoreline Change Rate	BEG Historic Shorelines	Stable to Accretion Low Moderate High
Proximity to Channel	HRI Channel Polygon	Large or small channel? Border Near Far

0	5	10		20 Miles
	I	11	1	

Factor	Data Source	Range
Bathymetry	ADCIRC Mesh	Shallow Deep
Relative Exposure Index	NOAA Wind gauges; USGS Fetch Model	Low Moderate High
Shoreline Type	HRI mapped Environmental Sensitivity Index	Beach or Marsh Present Scarp Present Armoring Present
Shoreline Change Rate	BEG Historic Shorelines	Stable to Accretion Low Moderate High
Proximity to Channel	HRI Channel Polygon	Large or small channel? Border Near Far

Factor	Data Source	Range
Bathymetry	ADCIRC Mesh	Shallow Deep
Relative Exposure Index	NOAA Wind gauges; USGS Fetch Model	Low Moderate High
Shoreline Type	HRI mapped Environmental Sensitivity Index	Beach or Marsh Present Scarp Present Armoring Present
Shoreline Change Rate	BEG Historic Shorelines	Stable to Accretion Low Moderate High
Proximity to Channel	HRI Channel Polygon	Large or small channel? Border Near Far

5

Integrated model: what is changing?

- Integrating the VIMS Shoreline Management Model (SMM v5.1) and Galveston Bay Foundation model with the HRI Site Suitability Model
 - Adding:
 - Submerged aquatic vegetation
 - Tributaries
 - Oysters
 - Boat ramps
 - Conservation areas
 - Incorporating newest available data

Site Suitability Output (original HRI model)

Summary

- Living Shoreline Site Suitability Model developed to indicate potential for different shoreline stabilization techniques
 - Only recommendations based on available data not the absolute answer to what technique should be used
 - Other factors should be considered
- Original HRI model is available online at <u>https://storymaps.arcgis.com/stories/d6989e741253424584c06ead83078c5d</u>
- GBF model is available online at
 <u>https://cmap2.vims.edu/GBShoreProtectViewer/</u>
- Integrated model will be available later this year
- Please contact HRI if you have any questions rhiannon.bezore@tamucc.edu

GLO Living Shorelines Resources and Tools

Upcoming Living Shorelines GLO website

- Manual and more
- Build
- Map "inventory"

Current GLO Website https://www.glo.texas.gov/coast/coastalmanagement/permitting/index.html

- Living shorelines manual
- Visual site assessment
- 2020 Living shoreline virtual workshop
- Plantings

Suitability model - HRI

Permits, leases, & authorizations

Authorizations needed are dependent on project scope, components, and location.

- > USACE: Individual Permit (IP) or Nationwide Permit (NWP)
- GLO: Coastal Boundary Survey and lease
- > TPWD: planting permit

Other agencies may be involved through the USACE permitting process.

GLO Leasing Contacts

Galveston

Permit Service Center

Texas A&M University Galveston 1001 Texas Clipper Road Building 3025, Room 193 Galveston, Texas 77554 Phone: 409-741-4057 Fax: 409-741-4010 Toll Free: 866-894-7664

La Porte

Coastal Field Operations

11811 North D St. La Porte, Texas 77571-9135 Phone: 281-470-1191 Fax: 281-470-8071

Corpus Christi

Permit Service Center & Coastal Field Operations

602 N. Staples Street, Suite 240 Corpus Christi, Texas 78401 Coastal Field Operations Phone: 361-886-1600 Permit Service Center Phone: 361-886-1630 Fax: 361-888-9305

permitting.assitance@glo.texas.gov

Success Stories

Driscoll Rooke Park, Bayside TX

Texas General Land Office George P. Bush, Commissioner

The Copano Bay Soil and Water Conservation District (**CCBSWCD**) worked with Coastal Bend Bays and Estuaries Program (**CBBEP**) to create a hybrid living shoreline project:

- Gently grade the eroding bluff
- Install articulated mat ~500 ft
- Build a sheet pile breakwater ~ 500 ft
- Plant Spartina alterniflora
- Project size ~25,500 square feet (0.59 acres)

Driscoll Rooke Park, Bayside TX

Texas General Land Office George P. Bush, Commissioner

03/01/2017 (Before)

09/20/2017 (After)

Copano Ridge Road, Rockport TX

This project was constructed to protect existing bulkheads and upland residential lots from erosion caused by high wave energy and to provide marsh habitat. Oysters have colonized the breakwaters, contributing to the ecosystem's habitat and the structure's overall effectiveness.

- Bulkhead
- Rock rubble breakwater: 1,570 linear feet
- *Spartina alternifora* planted: 13,068 square feet (0.3 acres)
- Project size ~108,340 square feet (2.49 acres)

UPPER COAST Success **Stories**

Clear Lake Forest Park

INSTALLATION: 2011

RESULTS:

- ~ 570 LF of shoreline protection
- ~ 0.40 ac of marsh restored

TECHNIQUE: Retrofit hybrid

Low-profile rock breakwater

Fill + marsh planting

BEFORE (2006)

AFTER (2019)

Sullivan Property

INSTALLATION: 2011 & 2013

RESULTS:

- ~ $\underline{980 \text{ LF}}$ of shoreline protection
- \sim <u>2.00 ac</u> of marsh restored
- **TECHNIQUE:** Hybrid Stabilization High-profile rock breakwater Marsh planting

TOOLS & RESOURCES

LIVING SHORELINES ACADEMY https://www.livingshorelinesacademy.org/

TX GENERAL LAND OFFICE WEBSITE

https://www.glo.texas.gov/coast/coastalmanagement/permitting/index.html *new version coming soon

A GUIDE TO LIVING SHORELINES IN TEXAS (GLO)

https://cleancoast.texas.gov/documents/guideto-living-shorelines-texas.pdf

HRI MODEL

https://storymaps.arcgis.com/stories/d6989e741 253424584c06ead83078c5d

GBF Model https://cmap2.vims.edu/GBShoreProtectViewer/

LOWER COAST CONTACTS

Permit Service Center: 361-886-1630

GENERAL LAND OFFICE: Kristin Hames 512-463-9271; kristin.hames@glo.texas.gov

Coastal Bend Bays & Estuaries Program 361-336-0304; info@cbbep.org

UPPER COAST CONTACTS

Permit Service Center: 409-741-4057

GENERAL LAND OFFICE (LA PORTE): 281-470-1191

Galveston Bay Foundation: Haille Leija 832-536-2270; <u>hleija@galvbay.org</u>